Matemática, perguntado por Usuário anônimo, 1 ano atrás

Sejam x e y números reais não nulos tais que:

 log_{x}( {y}^{\pi} ) + log_{y}( {x}^{e} ) = a

 \frac{1}{ log_{y}( {x}^{ {\pi}^{ - 1} } ) } - \frac{1}{ log_{x}( {y}^{ {e}^{ - 1} }) } = b

O valor de  \frac{ {x}^{a + b + 2e} }{ {y}^{a - b + 2\pi} } é:

a)1

b) \sqrt{ \frac{\pi}{e} }

c) \sqrt{ \frac{a e}{b\pi} }

d)a - b

e) \frac{ {(a + b)}^{ \frac{e}{\pi} }}{\pi}

Soluções para a tarefa

Respondido por robertocarlos5otivr9
1
\begin{cases}\text{log}_{x}y^{\pi}+\text{log}_{y}x^{e}=a\\\dfrac{1}{\text{log}_{y}x^{\pi^{-1}}}-\dfrac{1}{\text{log}_{x}y^{e^{-1}}}\end{cases}

Vamos simplificar essas equações. Aplicando a propriedade do logaritmo da potência na primeira equação, obtemos:

\bullet~~\tetx{log}_{x}y^{\pi}=\pi\cdot\text{log}_{x}y

\bullet~~\text{log}_{y}x^{e}=e\cdot\text{log}_{y}x

\text{log}_{x}y^{\pi}+\text{log}_{y}x^{e}=a~\longrightarrow~=\pi\cdot\text{log}_{x}y+e\cdot\text{log}_{y}x=a

Agora a segunda equação. Aplicando essa mesma propriedade:

\bullet~~\tetx{log}_{y}x^{\pi^{-1}}=\pi^{-1}\cdot\text{log}_{y}x\\\bullet~~\text{log}_{x}y^{e^{-1}}=e^{-1}\cdot\text{log}_{x}y\\\\\dfrac{1}{\text{log}_{y}x^{\pi^{-1}}}-\dfrac{1}{\text{log}_{x}y^{e^{-1}}}=b~\longrightarrow~\dfrac{1}{\pi^{-1}\cdot\text{log}_{y}x}-\dfrac{1}{e^{-1}\cdot\text{log}_{x}y}=b

Mas \pi^{-1}=\dfrac{1}{\pi} e e^{-1}=\dfrac{1}{e}. Substituindo:

\dfrac{1}{\pi^{-1}\cdot\text{log}_{y}x}-\dfrac{1}{e^{-1}\cdot\text{log}_{x}y}=b~\longrightarrow~\dfrac{1}{\dfrac{1}{\pi}\cdot\text{log}_{y}x}-\dfrac{1}{\dfrac{1}{e}\cdot\text{log}_{x}y}=b

\dfrac{\pi}{\text{log}_{y}x}-\dfrac{e}{\text{log}_{x}y}=b

Fazendo mudança de base, obtemos o seguinte:

\star~~\text{log}_{y}x=\dfrac{\text{log}_{x}x}{\text{log}_{x}y}=\dfrac{1}{\text{log}_{x}y}~~~~~~~~~~~\star~~\text{log}_{x}y=\dfrac{\text{log}_{y}y}{\text{log}_{y}x}=\dfrac{1}{\text{log}_{y}x}

\dfrac{\pi}{\text{log}_{y}x}-\dfrac{e}{\text{log}_{x}y}=b~\longrightarrow~\dfrac{\pi}{\dfrac{1}{\text{log}_{x}y}}-\dfrac{e}{\dfrac{1}{\text{log}_{y}x}}=b 

\pi\cdot\text{log}_{x}y-e\cdot\text{log}_{y}x=b

\begin{cases}\text{log}_{x}y^{\pi}+\text{log}_{y}x^{e}=a\\\dfrac{1}{\text{log}_{y}x^{\pi^{-1}}}-\dfrac{1}{\text{log}_{x}y^{e^{-1}}}\end{cases}~\longrightarrow~\begin{cases}\pi\cdot\text{log}_{x}y+e\cdot\text{log}_{y}x=a\\\pi\cdot\text{log}_{x}y-e\cdot\text{log}_{y}x=b\end{cases}

Somando as equações membro a membro:

a+b=\pi\cdot\text{log}_{x}y+\pi\cdot\text{log}_{x}y+e\cdot\text{log}_{y}x-e\cdot\text{log}_{y}x

a+b=2\pi\cdot\text{log}_{x}y

Subtraindo a segunda equação da primeira:

a-b=\pi\cdot\text{log}_{x}y-\pi\cdot\text{log}_{x}y+e\cdot\text{log}_{y}x-(-e\cdot\text{log}_{y}x)

a-b=e\cdot\text{log}_{y}x+e\cdot\text{log}_{y}x

a-b=2e\cdot\text{log}_{y}x

Vamos determinar \dfrac{x^{a+b+2e}}{y^{a-b+2\pi}}:

Primeiro o numerador:

x^{a+b+2e}=x^{2\pi\cdot\text{log}_{x}y+2e}=(x^{\text{log}_{x}y})^{2\pi}}\cdot x^{2e}=y^{2\pi}\cdot x^{2e}

Lembre-se que x^{\text{log}_{x}y}=y e y^{\text{log}_{y}x}=x

Agora o denominador:

y^{a-b+2\pi}=y^{2e\cdot\text{log}_{y}x+2\pi}=(y^{\text{log}_{y}x})^{2e}}\cdot y^{2\pi}=x^{2e}\cdot y^{2\pi}

Logo:

\dfrac{x^{a+b+2e}}{y^{a-b+2\pi}}=\dfrac{y^{2\pi}\cdot x^{2e}}{x^{2e}\cdot y^{2\pi}}=1

\text{Alternativa A}

Usuário anônimo: Incrível..!!
Usuário anônimo: Muito obrigada..!! :)
Perguntas interessantes