Matemática, perguntado por vitorvasconcelpcec0d, 11 meses atrás

sejam as matrizes:
A =
[-4 3 ]
[ 1 2 ]

B =
[1 0 ]
[-1 3]

Calcule a determinante das seguintes mateizes:

A) A
B) B
C) A + B
D) A - B
E) A + 2B
F) A × B
G) A + l2
H) A transposta​

Anexos:

Soluções para a tarefa

Respondido por Couldnt
118

A determinante de uma matriz 2x2 é calculada por:

det\left(\begin{array}{ccc}a_{11}&a_{12}\\a_{21}&a_{22}\end{array}\right) = a_{11}\times a_{22} - a_{21}\times a_{12}

Assim, para as matrizes A e B tais que:

A = \left[\begin{array}{ccc}-4&3\\1&2\end{array}\right]

B = \left[\begin{array}{ccc}1&0\\-1&3\end{array}\right]

a) det(A):

det\left(\begin{array}{ccc}-4&3\\1&2\end{array}\right) = -4\times2 - 1\times 3 = -8-3 = -11

b) det(B):

det\left(\begin{array}{ccc}1&0\\-1&3\end{array}\right) = 1\times3 - (-1)\times 0 = 3

c) det(A+B):

A+B = \left[\begin{array}{ccc}-4&3\\1&2\end{array}\right]+\left[\begin{array}{ccc}1&0\\-1&3\end{array}\right] = \left[\begin{array}{ccc}-3&3\\0&5\end{array}\right]

det\left(\begin{array}{ccc}-3&3\\0&5\end{array}\right) = -3\times5-0\times3 = -15

d) A-B:

A-B = \left[\begin{array}{ccc}-4&3\\1&2\end{array}\right]-\left[\begin{array}{ccc}1&0\\-1&3\end{array}\right] = \left[\begin{array}{ccc}-5&3\\2&-1\end{array}\right]

det\left(\begin{array}{ccc}-5&3\\2&-1\end{array}\right) = -5\times(-1)-2\times3 = 5-6 = -1

e) A + 2B:

A+2B = \left[\begin{array}{ccc}-4&3\\1&2\end{array}\right]+\left[\begin{array}{ccc}2&0\\-2&6\end{array}\right] = \left[\begin{array}{ccc}-2&3\\-1&-4\end{array}\right]

det\left(\begin{array}{ccc}-2&3\\-1&8\end{array}\right) = -2\times8-(-1)\times3 = -16+3 = -13

f) AxB:

A\times B = \left[\begin{array}{ccc}-4&3\\1&2\end{array}\right]\times\left[\begin{array}{ccc}2&0\\-2&6\end{array}\right] = \left[\begin{array}{ccc}(-4*1)+(3*-1)&(-4*0+3*3)\\(1*1+2*-1)&(1*0+2*3)\end{array}\right] =\left[\begin{array}{ccc}-7&9\\-1&6\end{array}\right]

det\left(\begin{array}{ccc}-7&9\\-1&6\end{array}\right) = -7\times6 - (-1)\times9 = -42+9 = -33

g) A+I2:

A+I_2 = \left[\begin{array}{ccc}-4&3\\1&2\end{array}\right]+\left[\begin{array}{ccc}1&0\\0&1\end{array}\right] = \left[\begin{array}{ccc}-3&3\\1&3\end{array}\right]

det\left(\begin{array}{ccc}-3&3\\1&3\end{array}\right) = -3\times3-1\times3 = -9-3 = -12

h) A^T

A^T = \left[\begin{array}{ccc}-4&3\\1&2\end{array}\right]

 det\left(\begin{array}{ccc}-4&3\\1&2\end{array}\right) = -4\times2 -3\times1 = -8-3 = -11

Algumas relações úteis que também ajudariam:

det(A\times B) = det(A) \times det(B)

det(A^T) = det(A)

det(k\times A) = k^n \times det(A)

onde A é uma matriz n x n.

Perguntas interessantes