Sejam A e B duas matrizes quadradas de mesma ordem. Assim, se det AB = 0, então é possível afirmar que
A
pelo menos uma das duas é a matriz nula.
B
pelo menos uma das duas não é invertível.
C
det (A + B) = det A ou det (A + B) = det B.
D
o produto AB é igual à matriz nula.
E
A e B são matrizes inversas uma da outra.
Soluções para a tarefa
Respondido por
14
Tendo em mente que uma matriz quadrada é invertível e somente se, seu determinante não é nulo, então podemos dizer que sobre essas condições, no caso onde A e B são duas matrizes quadradas da mesma ordem, a resposta correta é a alternativa e) A e B são matrizes inversas uma da outra.
Vamos aos dados/resoluções:
É de conhecimento público que A.B não invertível equivale a det (A.B) = 0.
Portanto então, podemos finalizar dizendo que (det A).(det B) = 0 e, assim, (det A) = 0 ou (det B) = 0, ou seja A ou B não é invertível.
espero ter ajudado nos estudos, bom dia :)
Perguntas interessantes