Matemática, perguntado por bre4nclau6dinha, 1 ano atrás

Sejam a= (aij) 2x2 com aij= i+J e b (bij) =j+i determine a matriz c tal que c= a. B

Soluções para a tarefa

Respondido por georgenasciment
3
Olá Bre4n,
Como vai?
Vamos lá:

  A=\left[\begin{array}{ccc}a_{11}&a_{12}\\a_{21}&a_{22}\end{array}\right]\\
\\
a_{11}=1+1\\
a_{11}=2\\
\\
a_{12}=1+2\\
a_{12}=3\\
\\
a_{21}=2+1\\
a_{21}=3\\
\\
a_{22}=2+2\\
a_{22}=4\\
\\
A=\left[\begin{array}{ccc}2&3\\3&4\\\end{array}\right] \\
\\
------\\
\\
B=\left[\begin{array}{ccc}b_{11}&b_{12}\\b_{21}&b_{22}\\\end{array}\right]\\
\\
b_{11}=1+1\\
b_{11}=2\\
\\
b_{12}=2+1\\
b_{12}=3\\
\\
b_{21}=1+2\\
b_{21}=3\\
\\
b_{22}=2+2\\
b_{22}=4\\
\\

B=  \left[\begin{array}{ccc}2&3\\3&4\\\end{array}\right] \\
\\
C=A*B\\
\\
C=  \left[\begin{array}{ccc}2&3\\3&4\\\end{array}\right] *\left[\begin{array}{ccc}2&3\\3&4\\\end{array}\right] \\
\\
C=  \left[\begin{array}{ccc}2\cdot 3+3\cdot 3&2\cdot 3+3\cdot 4\\3\cdot 2+4\cdot 3&3\cdot 3+4\cdot 4\\\end{array}\right]\\
\\
\\
\boxed{\boxed{C=  \left[\begin{array}{ccc}15&18\\18&25\\\end{array}\right]  }}

Espero ter ajudado (:
Perguntas interessantes