Seja y a diferença entre a variância e o desvio-padrão de um conjunto de elementos. O menor valor possível de y é igual a:
a) 0
b) -1/4
c) -1/2
d) -1
e) -2
Soluções para a tarefa
Explicação passo-a-passo: No estudo da Estatística, dispomos de algumas estratégias para verificar se os valores apresentados em um conjunto de dados estão dispersos ou não e o quão distantes um do outro eles podem estar. As ferramentas empregadas para que isso seja possível são classificadas como medidas de dispersão e denominadas de variância e desvio padrão. Vejamos o que representa cada uma delas:
Variância:
Dado um conjunto de dados, a variância é uma medida de dispersão que mostra o quão distante cada valor desse conjunto está do valor central (médio).
Quanto menor é a variância, mais próximos os valores estão da média; mas quanto maior ela é, mais os valores estão distantes da média.
Considere que x1, x2, …, xn são os n elementos de uma amostra e que x é a média aritmética desses elementos. O cálculo da variância amostral é dado por:
Var. amostral = (x1 – x)² + (x2 – x)² + (x3 – x)² + ... + (xn – x)²
n – 1
Se, em contrapartida, quisermos calcular a variância populacional, consideraremos todos os elementos da população, e não apenas de uma amostra. Nesse caso, o cálculo possui uma pequena diferença. Observe:
Var. populacional = (x1 – x)² + (x2 – x)² + (x3 – x)² + ... + (xn – x)²
n
Desvio Padrão:
O desvio padrão é capaz de identificar o “erro” em um conjunto de dados, caso quiséssemos substituir um dos valores coletados pela média aritmética.
O desvio padrão aparece junto à média aritmética, informando o quão “confiável” é esse valor. Ele é apresentado da seguinte forma:
média aritmética (x) ± desvio padrão (dp)
O cálculo do desvio padrão é feito a partir da raiz quadrada positiva da variância. Portanto:
dp = √var
Vamos agora aplicar o calculo da variância e do desvio padrão em um exemplo:
Em uma escola, a direção decidiu observar a quantidade de alunos que apresentam todas as notas acima da média em todas as disciplinas. Para analisar melhor, a diretora Ana resolveu montar uma tabela com a quantidade de notas “azuis” em uma amostra de quatro turmas ao longo de um ano. Observe a seguir a tabela organizada pela diretora:
Antes de calcular a variância, é necessário verificar a média aritmética (x) da quantidade de alunos acima da média em cada turma:
6° ano → x = 5 + 8 + 10 + 7 = 30 = 7,50.
4 4
7° ano → x = 8 + 6 + 6 + 12 = 32 = 8,00.
4 4
8° ano → x = 11 + 9 + 5 + 10 = 35 = 8,75.
4 4
9° ano → x = 8 + 13 + 9 + 4 = 34 = 8,50.
4 4
Para calcular a variância da quantidade de alunos acima da média em cada turma, utilizamos uma amostra, por isso empregamos a fórmula da variância amostral:
Var. amostral = (x1 – x)² + (x2 – x)² + (x3 – x)² + ... + (xn – x)²
n – 1
a) 0,5
b) 1
c) 1,5
d) 2
e) 2,5