Matemática, perguntado por fernandotrockt, 6 meses atrás

Seja uma função do 2º grau, cujo gráfico é representado abaixo. Qual a lei que representa esse gráfico? ​

Anexos:

Soluções para a tarefa

Respondido por GusTzBr
2

→ A lei que representa o gráfico é y = x² - 4x + 3

Existe uma 'equação' que ajuda a encontrar qual a função de segundo grau quando você sabe quais são as raízes (números onde o gráfico corta o eixo x). Nesse caso, as raízes são 1 e 3. A forma é:

\Large \text  {$y = a(x-x_1)(x-x_2)$}

a é um coeficiente que vamos encontrar substituindo um ponto do gráfico.

x1 é a raiz 1.

x2 é a raiz 2.

Então substituindo o que temos agora (que são as raízes):

\Large \text  {$y = a(x-1)(x-3)$}

Veja que no gráfico quando x vale zero, o y é igual a 3. Então vamos substituir esses pontos na equação acima e achar o valor de a:

\Large \text  {$3 = a(0-1)(0-3)$}\\\\\Large \text  {$3 = 3a$}\\\\\Large \text  {$a = 1$}

Então a equação será:

\Large \text  {$y = 1(x-1)(x-3)$}\\\\\Large \text  {$y = x^2 -3x - x + 3$}\\\\\Large \text  {$y = x^2 -4x + 3$}

Espero que tenha ficado claro a dedução!

→ Veja mais em:

  • https://brainly.com.br/tarefa/20458530
  • https://brainly.com.br/tarefa/30272112
  • https://brainly.com.br/tarefa/10720389
Anexos:
Perguntas interessantes