Seja um triângulo de vértices A(3, 5, 1), B(2, -2, 3) e C(-4, -1, 2). Determine o ângulo interno ao vértice B.
A) 82,38°
B) 87,46°
C) 86,2°
D) 88,73°
E) 89,36°
cos θ = (BA · BC)/(||BA|| · ||BC||)
cos θ = ((1, 7, −2) · (−6, 1, −1))/(√(1² + 7² + (−2)²) · √((−6)² + 1² + (−1)²))
cos θ = (1 · (−6) + 7 · 1 + (−2) · (−1))/(√(1 + 49 + 4) · √(36 + 1 + 1))
cos θ = (−6 + 7 + 2)/(√54 · √38)
cos θ = 3/√2052
cos θ = 1/(2√57)
θ = arccos(1/(2√57)) ≈ 86,2°
Soluções para a tarefa
Respondido por
2
Temos:
u = AB
u = B - A
u = (2,-2,3) - (3,5,1)
u = (-1,-7,2)
====
v = AC
v = C - A
v = (-4,-1,2) - (3,5,1)
v = (-7,-6,1)
====
w = BC
w = C - B
w = (-4,-1,2) - (2,-2,3)
w = (-6,1,-1)
Portanto, o ângulo interno ao vértice B será o ângulo entre os vetores u e w, daí temos:
![\displaystyle \cos \theta = \frac{\vec{u} \cdot \vec{w}}{|| \vec{u} || \cdot ||\vec{w}||} \\ \\ \\ \cos \theta = \frac{(-1,-7,2) \cdot (-6,1,-1)}{\sqrt{(-1)^2+(-7)^2+2^2} \cdot \sqrt{(-6)^2 + 1^2 + (-1)^2}} \\ \\ \\ \cos \theta = \frac{|-3|}{\sqrt{54} \cdot \sqrt{38}} \\ \\ \\ \cos \theta = \frac{3}{\sqrt{2052}} \\ \\ \\ \cos \theta \approx 0,066226617 \\ \\ \\ \arccos (0,066226617) \approx 86,2^o \displaystyle \cos \theta = \frac{\vec{u} \cdot \vec{w}}{|| \vec{u} || \cdot ||\vec{w}||} \\ \\ \\ \cos \theta = \frac{(-1,-7,2) \cdot (-6,1,-1)}{\sqrt{(-1)^2+(-7)^2+2^2} \cdot \sqrt{(-6)^2 + 1^2 + (-1)^2}} \\ \\ \\ \cos \theta = \frac{|-3|}{\sqrt{54} \cdot \sqrt{38}} \\ \\ \\ \cos \theta = \frac{3}{\sqrt{2052}} \\ \\ \\ \cos \theta \approx 0,066226617 \\ \\ \\ \arccos (0,066226617) \approx 86,2^o](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Ccos+%5Ctheta+%3D+%5Cfrac%7B%5Cvec%7Bu%7D+%5Ccdot+%5Cvec%7Bw%7D%7D%7B%7C%7C+%5Cvec%7Bu%7D+%7C%7C+%5Ccdot+%7C%7C%5Cvec%7Bw%7D%7C%7C%7D+%5C%5C+%5C%5C+%5C%5C+%5Ccos+%5Ctheta+%3D+%5Cfrac%7B%28-1%2C-7%2C2%29+%5Ccdot+%28-6%2C1%2C-1%29%7D%7B%5Csqrt%7B%28-1%29%5E2%2B%28-7%29%5E2%2B2%5E2%7D+%5Ccdot+%5Csqrt%7B%28-6%29%5E2+%2B+1%5E2+%2B+%28-1%29%5E2%7D%7D+%5C%5C+%5C%5C+%5C%5C+%5Ccos+%5Ctheta+%3D+%5Cfrac%7B%7C-3%7C%7D%7B%5Csqrt%7B54%7D+%5Ccdot+%5Csqrt%7B38%7D%7D+%5C%5C+%5C%5C+%5C%5C+%5Ccos+%5Ctheta+%3D+%5Cfrac%7B3%7D%7B%5Csqrt%7B2052%7D%7D+%5C%5C+%5C%5C+%5C%5C+%5Ccos+%5Ctheta+%5Capprox+0%2C066226617+%5C%5C+%5C%5C+%5C%5C+%5Carccos+%280%2C066226617%29+%5Capprox+86%2C2%5Eo)
u = AB
u = B - A
u = (2,-2,3) - (3,5,1)
u = (-1,-7,2)
====
v = AC
v = C - A
v = (-4,-1,2) - (3,5,1)
v = (-7,-6,1)
====
w = BC
w = C - B
w = (-4,-1,2) - (2,-2,3)
w = (-6,1,-1)
Portanto, o ângulo interno ao vértice B será o ângulo entre os vetores u e w, daí temos:
Perguntas interessantes
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Artes,
11 meses atrás
História,
1 ano atrás
Matemática,
1 ano atrás
BA = A − B
BA = (3, 5, 1) − (2, −2, 3)
BA = (1, 7, −2)
BC = C − B
BC = (−4, −1, 2) − (2, −2, 3)
BC = (−6, 1, −1)