Seja q=30-4x-2y a equação de demanda de um produto A, x seu preço unitário e y o preço unitário de um bem BI.
a) Calcule as demandas marginais parciais ∂q/∂x e ∂q/∂y, explicando seu significado.
b) O que aumenta mais a demanda de A: diminuir em uma unidade seu preço unitário (mantendo o preço de B) ou diminuir em uma unidade o preço de B(mantendo o de A)?
*derivadas*
Soluções para a tarefa
Olá,
Temos a função demanda:
a) Vamos aplicar derivadas parciais para calcular as demandas parciais dos produtos.
Assim, segue:
Para o cálculo anterior lembre-se que para determinar a derivada parcial em relação a x, mantenha y constante. Faz o contrário para determinar a derivada parcial em relação a y.
Explicação das derivadas parciais obtidas: As derivadas parciais obtidas representam as elasticidade preço-demanda dos produtos. Em outras palavras, representam a sensibilidade na demanda quando ocorrem variações nos preços.
b) Você pode responder essa questão lembrando que a demanda responde inversamente ao preço (Lei da demanda), então, reduzir uma unidade do preço do produto A, aumenta a demanda em maior magnitude do que reduzir uma unidade do preço de B, ceteris paribus. Isso ocorre pois, o módulo da elasticidade de A é maior que o módulo da elasticidade de B, então, uma variação no preço de A produz maior acréscimo na demanda do bem A.