Seja f(x) = sen x + cos x. Calcule o valor de
.
Soluções para a tarefa
Respondido por
22
Identidades utilizadas:
![\begin{array}{rclc} \cos \alpha&=&\mathrm{sen}\left(\frac{\pi}{2}-\alpha \right )&\;\;\;\;\text{(i)}\\ \\ \mathrm{sen\,}\alpha+\mathrm{sen\,}\beta&=&2\cdot \mathrm{sen}\left(\frac{\alpha+\beta}{2} \right )\cdot \cos \left(\frac{\alpha-\beta}{2} \right )&\;\;\;\;\text{(ii)}\\ \\ \cos \left(-\alpha \right )&=&\cos \alpha&\;\;\;\;\text{(iii)} \end{array} \begin{array}{rclc} \cos \alpha&=&\mathrm{sen}\left(\frac{\pi}{2}-\alpha \right )&\;\;\;\;\text{(i)}\\ \\ \mathrm{sen\,}\alpha+\mathrm{sen\,}\beta&=&2\cdot \mathrm{sen}\left(\frac{\alpha+\beta}{2} \right )\cdot \cos \left(\frac{\alpha-\beta}{2} \right )&\;\;\;\;\text{(ii)}\\ \\ \cos \left(-\alpha \right )&=&\cos \alpha&\;\;\;\;\text{(iii)} \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brclc%7D+%5Ccos+%5Calpha%26amp%3B%3D%26amp%3B%5Cmathrm%7Bsen%7D%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D-%5Calpha+%5Cright+%29%26amp%3B%5C%3B%5C%3B%5C%3B%5C%3B%5Ctext%7B%28i%29%7D%5C%5C+%5C%5C+%5Cmathrm%7Bsen%5C%2C%7D%5Calpha%2B%5Cmathrm%7Bsen%5C%2C%7D%5Cbeta%26amp%3B%3D%26amp%3B2%5Ccdot+%5Cmathrm%7Bsen%7D%5Cleft%28%5Cfrac%7B%5Calpha%2B%5Cbeta%7D%7B2%7D+%5Cright+%29%5Ccdot+%5Ccos+%5Cleft%28%5Cfrac%7B%5Calpha-%5Cbeta%7D%7B2%7D+%5Cright+%29%26amp%3B%5C%3B%5C%3B%5C%3B%5C%3B%5Ctext%7B%28ii%29%7D%5C%5C+%5C%5C+%5Ccos+%5Cleft%28-%5Calpha+%5Cright+%29%26amp%3B%3D%26amp%3B%5Ccos+%5Calpha%26amp%3B%5C%3B%5C%3B%5C%3B%5C%3B%5Ctext%7B%28iii%29%7D+%5Cend%7Barray%7D)
![f\left(x \right )=\mathrm{sen\,}x+\cos x\\ \\ f\left(x \right )=\mathrm{sen\,}x+\mathrm{sen}\left(\frac{\pi}{2}-x \right )\\ \\ f\left(x \right )=2\cdot \mathrm{sen}\left(\dfrac{x+\left(\frac{\pi}{2}-x \right )}{2} \right )\cdot\cos\left(\dfrac{x-\left(\frac{\pi}{2}-x \right )}{2} \right )\\ \\ f\left(x \right )=2\cdot \mathrm{sen}\left(\dfrac{\left(\frac{\pi}{2} \right )}{2} \right )\cdot\cos\left(\dfrac{2x-\frac{\pi}{2}}{2} \right )\\ \\ f\left(x \right )=2\cdot \mathrm{sen\,}\frac{\pi}{4}\cdot\cos\left(x- \frac{\pi}{4} \right )\\ \\ f\left(x \right )=\diagup\!\!\!\!2\cdot \frac{\sqrt{2}}{\diagup\!\!\!\!2}\cdot\cos\left(x-\frac{\pi}{4} \right )\\ \\ \boxed{f\left(x \right )=\sqrt{2}\cdot\cos\left(x-\frac{\pi}{4} \right )} f\left(x \right )=\mathrm{sen\,}x+\cos x\\ \\ f\left(x \right )=\mathrm{sen\,}x+\mathrm{sen}\left(\frac{\pi}{2}-x \right )\\ \\ f\left(x \right )=2\cdot \mathrm{sen}\left(\dfrac{x+\left(\frac{\pi}{2}-x \right )}{2} \right )\cdot\cos\left(\dfrac{x-\left(\frac{\pi}{2}-x \right )}{2} \right )\\ \\ f\left(x \right )=2\cdot \mathrm{sen}\left(\dfrac{\left(\frac{\pi}{2} \right )}{2} \right )\cdot\cos\left(\dfrac{2x-\frac{\pi}{2}}{2} \right )\\ \\ f\left(x \right )=2\cdot \mathrm{sen\,}\frac{\pi}{4}\cdot\cos\left(x- \frac{\pi}{4} \right )\\ \\ f\left(x \right )=\diagup\!\!\!\!2\cdot \frac{\sqrt{2}}{\diagup\!\!\!\!2}\cdot\cos\left(x-\frac{\pi}{4} \right )\\ \\ \boxed{f\left(x \right )=\sqrt{2}\cdot\cos\left(x-\frac{\pi}{4} \right )}](https://tex.z-dn.net/?f=f%5Cleft%28x+%5Cright+%29%3D%5Cmathrm%7Bsen%5C%2C%7Dx%2B%5Ccos+x%5C%5C+%5C%5C+f%5Cleft%28x+%5Cright+%29%3D%5Cmathrm%7Bsen%5C%2C%7Dx%2B%5Cmathrm%7Bsen%7D%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D-x+%5Cright+%29%5C%5C+%5C%5C+f%5Cleft%28x+%5Cright+%29%3D2%5Ccdot+%5Cmathrm%7Bsen%7D%5Cleft%28%5Cdfrac%7Bx%2B%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D-x+%5Cright+%29%7D%7B2%7D+%5Cright+%29%5Ccdot%5Ccos%5Cleft%28%5Cdfrac%7Bx-%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D-x+%5Cright+%29%7D%7B2%7D+%5Cright+%29%5C%5C+%5C%5C+f%5Cleft%28x+%5Cright+%29%3D2%5Ccdot+%5Cmathrm%7Bsen%7D%5Cleft%28%5Cdfrac%7B%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D+%5Cright+%29%7D%7B2%7D+%5Cright+%29%5Ccdot%5Ccos%5Cleft%28%5Cdfrac%7B2x-%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B2%7D+%5Cright+%29%5C%5C+%5C%5C+f%5Cleft%28x+%5Cright+%29%3D2%5Ccdot+%5Cmathrm%7Bsen%5C%2C%7D%5Cfrac%7B%5Cpi%7D%7B4%7D%5Ccdot%5Ccos%5Cleft%28x-+%5Cfrac%7B%5Cpi%7D%7B4%7D+%5Cright+%29%5C%5C+%5C%5C+f%5Cleft%28x+%5Cright+%29%3D%5Cdiagup%5C%21%5C%21%5C%21%5C%212%5Ccdot+%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%212%7D%5Ccdot%5Ccos%5Cleft%28x-%5Cfrac%7B%5Cpi%7D%7B4%7D+%5Cright+%29%5C%5C+%5C%5C+%5Cboxed%7Bf%5Cleft%28x+%5Cright+%29%3D%5Csqrt%7B2%7D%5Ccdot%5Ccos%5Cleft%28x-%5Cfrac%7B%5Cpi%7D%7B4%7D+%5Cright+%29%7D)
![\sqrt{6}\cdot f\left(\frac{\pi}{12} \right )\\ \\ =\sqrt{6}\cdot \sqrt{2}\cdot\cos\left(\frac{\pi}{12}-\frac{\pi}{4} \right )\\ \\ =\sqrt{6 \cdot 2}\cdot \cos\left(\frac{\pi}{12}-\frac{3\pi}{12} \right )\\ \\ =\sqrt{12}\cdot\cos\left(\frac{\pi-3\pi}{12} \right )\\ \\ =\sqrt{2^{2}\cdot 3}\cdot\cos\left(-\frac{2\pi}{12} \right )\\ \\ =2\sqrt{3}\cdot\cos\left(-\frac{\pi}{6} \right )\\ \\ =2\sqrt{3}\cdot\cos\frac{\pi}{6}\\ \\ =\diagup\!\!\!\!2\sqrt{3}\cdot\frac{\sqrt{3}}{\diagup\!\!\!\!2}\\ \\ =\sqrt{3}\cdot \sqrt{3}\\ \\ =\left(\sqrt{3} \right )^{2}\\ \\ =3\\ \\ \\ \boxed{\sqrt{6}\cdot f\left(\frac{\pi}{12} \right )=3} \sqrt{6}\cdot f\left(\frac{\pi}{12} \right )\\ \\ =\sqrt{6}\cdot \sqrt{2}\cdot\cos\left(\frac{\pi}{12}-\frac{\pi}{4} \right )\\ \\ =\sqrt{6 \cdot 2}\cdot \cos\left(\frac{\pi}{12}-\frac{3\pi}{12} \right )\\ \\ =\sqrt{12}\cdot\cos\left(\frac{\pi-3\pi}{12} \right )\\ \\ =\sqrt{2^{2}\cdot 3}\cdot\cos\left(-\frac{2\pi}{12} \right )\\ \\ =2\sqrt{3}\cdot\cos\left(-\frac{\pi}{6} \right )\\ \\ =2\sqrt{3}\cdot\cos\frac{\pi}{6}\\ \\ =\diagup\!\!\!\!2\sqrt{3}\cdot\frac{\sqrt{3}}{\diagup\!\!\!\!2}\\ \\ =\sqrt{3}\cdot \sqrt{3}\\ \\ =\left(\sqrt{3} \right )^{2}\\ \\ =3\\ \\ \\ \boxed{\sqrt{6}\cdot f\left(\frac{\pi}{12} \right )=3}](https://tex.z-dn.net/?f=%5Csqrt%7B6%7D%5Ccdot+f%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B12%7D+%5Cright+%29%5C%5C+%5C%5C+%3D%5Csqrt%7B6%7D%5Ccdot+%5Csqrt%7B2%7D%5Ccdot%5Ccos%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B12%7D-%5Cfrac%7B%5Cpi%7D%7B4%7D+%5Cright+%29%5C%5C+%5C%5C+%3D%5Csqrt%7B6+%5Ccdot+2%7D%5Ccdot+%5Ccos%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B12%7D-%5Cfrac%7B3%5Cpi%7D%7B12%7D+%5Cright+%29%5C%5C+%5C%5C+%3D%5Csqrt%7B12%7D%5Ccdot%5Ccos%5Cleft%28%5Cfrac%7B%5Cpi-3%5Cpi%7D%7B12%7D+%5Cright+%29%5C%5C+%5C%5C+%3D%5Csqrt%7B2%5E%7B2%7D%5Ccdot+3%7D%5Ccdot%5Ccos%5Cleft%28-%5Cfrac%7B2%5Cpi%7D%7B12%7D+%5Cright+%29%5C%5C+%5C%5C+%3D2%5Csqrt%7B3%7D%5Ccdot%5Ccos%5Cleft%28-%5Cfrac%7B%5Cpi%7D%7B6%7D+%5Cright+%29%5C%5C+%5C%5C+%3D2%5Csqrt%7B3%7D%5Ccdot%5Ccos%5Cfrac%7B%5Cpi%7D%7B6%7D%5C%5C+%5C%5C+%3D%5Cdiagup%5C%21%5C%21%5C%21%5C%212%5Csqrt%7B3%7D%5Ccdot%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%212%7D%5C%5C+%5C%5C+%3D%5Csqrt%7B3%7D%5Ccdot+%5Csqrt%7B3%7D%5C%5C+%5C%5C+%3D%5Cleft%28%5Csqrt%7B3%7D+%5Cright+%29%5E%7B2%7D%5C%5C+%5C%5C+%3D3%5C%5C+%5C%5C+%5C%5C+%5Cboxed%7B%5Csqrt%7B6%7D%5Ccdot+f%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B12%7D+%5Cright+%29%3D3%7D)
Perguntas interessantes
História,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Português,
1 ano atrás
Biologia,
1 ano atrás