Matemática, perguntado por Daniisntos, 1 ano atrás

Seja f (x) = ax quadrado + bx + c sabendo que f(0) = 6 f( 1) = 2 e f (-2)= 20 Dtermine o valor de f (3/2)

Soluções para a tarefa

Respondido por FdASO
0
Se \ f(x)=ax^2+bx+c:\\\\
f(0)=6\\
f(0)=a.0^2+b.0+c\\
f(0)=c \implies \ c=6\\\\
f(1)=2\\
f(1)=a.1^2+b.1+6\\
f(1)=a+b+6\\
a+b+6=2\\
a+b=-4 \implies \ b=-4-a\\\\
f(-2)=20\\
f(-2)=a.(-2)^2+b.(-2)+6\\
f(-2)=4a-2b+6\\
4a-2b+6=20\\
4a-2b=20-6\\
4a-2b=14\\
2a-b=7\\\\
2a-(-4-a)=7\\
2a+4+a=7\\
3a=7-4\\
3a=3\\
a=1\\\\
b=-4-a\\
b=-4-1\\
b=-5
Agora \ f(x) \ fica:\\\\
f(x)=x^2-5x+6\\\\
f(\frac{3}{2})=(\frac{3}{2})^2-5(\frac{3}{2})+6\\\\
f(\frac{3}{2})=\frac{9}{4}-\frac{15}{2}+6\\\\
f(\frac{3}{2})=\frac{9-15.2+6.2}{4}\\\\
f(\frac{3}{2})=\frac{9-30+12}{4}\\\\
f(\frac{3}{2})=\frac{-9}{4}\\\\
Perguntas interessantes