Seja f uma funçao real de variavel real, satisfazendo: f(a + b) = f(a) . f(b), f(4) = 4 e f(5) = 4.calcule f(9)+f(0)
jvitor20:
f(4) = 4 e f(5) = 4?
Soluções para a tarefa
Respondido por
1
Olá Flavia
f(a + b) = f(a) * f(b)
f(4) = 4 , f(5) = 4
f(4 + 5) = f(4)*f(5) = 4*4 = 16
f(9) = 16
f(0 + 4) = f(0)*f(4) = f(0)*4
f(4) = f(0)*4 = 4
f(0) = 4/4 = 1
f(9) + f(0) = 16 + 1 = 17
.
f(a + b) = f(a) * f(b)
f(4) = 4 , f(5) = 4
f(4 + 5) = f(4)*f(5) = 4*4 = 16
f(9) = 16
f(0 + 4) = f(0)*f(4) = f(0)*4
f(4) = f(0)*4 = 4
f(0) = 4/4 = 1
f(9) + f(0) = 16 + 1 = 17
.
Respondido por
1
Olá!
f(a+b) = f(a)·f(b)
f(4) = 4
f(5) = 4
f(4+5) = f(4)·f(5)
f(9) = 4·4
f(9) = 16
f(0+9) = f(0)·f(9)
f(9) = f(0)·f(9)
16 = f(0)·16
f(0) = 16/16
f(0) = 1
Logo,
f(9) + f(0) = 16+1 = 17
Resposta:
17
f(a+b) = f(a)·f(b)
f(4) = 4
f(5) = 4
f(4+5) = f(4)·f(5)
f(9) = 4·4
f(9) = 16
f(0+9) = f(0)·f(9)
f(9) = f(0)·f(9)
16 = f(0)·16
f(0) = 16/16
f(0) = 1
Logo,
f(9) + f(0) = 16+1 = 17
Resposta:
17
Perguntas interessantes