Seja f: N -> Z definida por f(x) = -x. Qual é o conjunto imagem de f ?
Soluções para a tarefa
Resposta:
Im = Z- (imagem = inteiros não-positivos)
Explicação passo-a-passo:
O gráfico da função f(x) = -x é decrescente passando pelo ponto (0, 0), ou seja, é a bissetriz dos quadrantes pares. No entanto, o domínio foi restringido ao conjunto dos naturais, ou seja, o x só poder ser números naturais (o x tem que ser de 0 em diante positivo). O contra-domínio, no entanto, pode ser todo o eixo y, mas considerando apenas os inteiros (..., -3, -2, -1, 0, 1, 2, 3...). No entanto, o conjunto imagem é apenas os inteiros não-positivos, pois:
f(x) = -x
f(0) = -0 >> f(0) = 0
f(1) = -1
f(2) = -2
f(3) = -3
f(4) = -4
.
.
.
f(n) = -n
Ou seja, concluímos que qualquer x natural que eu colocar, vai gerar uma imagem desse mesmo número, só que negativo, o que podemos resumir em dizer que a imagem é os inteiros não-positivos. A imagem não é os inteiros negativos, pois o 0 está incluso.