Seja "ABCD" um trapézio de bases "AB" e "CD". Seja "E" o ponto de interseção das diagonais de "ABCD".
1. Mostre que os triângulos "ABE" e "CDE" são semelhantes.
2. Sejam "a" e "b" as medidas das bases "AB" e "CD" de "ABCD" respectivamente, "h" a altura de "ABCD", "h1" a altura do triângulo "ABE" relativa ao lado "AB" e "h2" a altura do triângulo "CDE" relativa ao lado "CD". Mostre que h1 = ah/a+b e h2 = bh/a+b.
3. Mostre que √(ABCD) = √(ABE) + √(CDE), onde (ABCD), (ABE) e (CDE) denotam as áreas do trapézio "ABCD" e dos triângulos "ABE e CDE", respectivamente.
Anexos:
![](https://pt-static.z-dn.net/files/d0a/a4c029e369fd2a6da3fc110b3bf4fcd1.png)
Soluções para a tarefa
Respondido por
38
1) Proba
AB || CD ====> m<EDC = m < EBA e m < DCE = m < EAB
Por ende (AAA) ya que os ángulos sao iguales os triángulos DEC e AEB sao semejantes
2)
a) Trace uma semireta paralela al segemento DB por o punto C
b) Prolongue AB hasta que se corte con la semireta (a) en um punto F
c) Os triangulos DEC, AEB e ACF sao semejantes, entao
![\dfrac{h_1}{a}=\dfrac{h_2}{b}=\dfrac{h}{a+b}\\ \\ \\
h_1=\dfrac{ah}{a+b}~~~~~\&~~~~~~h_2=\dfrac{bh}{a+b} \dfrac{h_1}{a}=\dfrac{h_2}{b}=\dfrac{h}{a+b}\\ \\ \\
h_1=\dfrac{ah}{a+b}~~~~~\&~~~~~~h_2=\dfrac{bh}{a+b}](https://tex.z-dn.net/?f=%5Cdfrac%7Bh_1%7D%7Ba%7D%3D%5Cdfrac%7Bh_2%7D%7Bb%7D%3D%5Cdfrac%7Bh%7D%7Ba%2Bb%7D%5C%5C+%5C%5C+%5C%5C+%0Ah_1%3D%5Cdfrac%7Bah%7D%7Ba%2Bb%7D%7E%7E%7E%7E%7E%5C%26amp%3B%7E%7E%7E%7E%7E%7Eh_2%3D%5Cdfrac%7Bbh%7D%7Ba%2Bb%7D)
3)
![[ABCD]=\dfrac{a+b}{2}\times h\\ \\ \\
\left[ABE\right]=\dfrac{ah_1}{2}=\dfrac{a}{2}\times \dfrac{ah}{a+b}=\dfrac{a^2h}{2(a+b)}\\ \\ \\
\left[CDE\right]=\dfrac{bh_2}{2}=\dfrac{b}{2}\times \dfrac{bh}{a+b}=\dfrac{b^2h}{2(a+b)}\\ \\ \\
===========\\ \\
\sqrt{[ABE]}=a\sqrt{\dfrac{h}{2(a+b)}}\\ \\ \\
\sqrt{[CDE]}=b\sqrt{\dfrac{h}{2(a+b)}}\\ \\ \\
\sqrt{[ABE]}+\sqrt{[CDE]}=(a+b)\sqrt{\dfrac{h}{2(a+b)}}
[ABCD]=\dfrac{a+b}{2}\times h\\ \\ \\
\left[ABE\right]=\dfrac{ah_1}{2}=\dfrac{a}{2}\times \dfrac{ah}{a+b}=\dfrac{a^2h}{2(a+b)}\\ \\ \\
\left[CDE\right]=\dfrac{bh_2}{2}=\dfrac{b}{2}\times \dfrac{bh}{a+b}=\dfrac{b^2h}{2(a+b)}\\ \\ \\
===========\\ \\
\sqrt{[ABE]}=a\sqrt{\dfrac{h}{2(a+b)}}\\ \\ \\
\sqrt{[CDE]}=b\sqrt{\dfrac{h}{2(a+b)}}\\ \\ \\
\sqrt{[ABE]}+\sqrt{[CDE]}=(a+b)\sqrt{\dfrac{h}{2(a+b)}}](https://tex.z-dn.net/?f=%5BABCD%5D%3D%5Cdfrac%7Ba%2Bb%7D%7B2%7D%5Ctimes+h%5C%5C+%5C%5C+%5C%5C%0A%5Cleft%5BABE%5Cright%5D%3D%5Cdfrac%7Bah_1%7D%7B2%7D%3D%5Cdfrac%7Ba%7D%7B2%7D%5Ctimes+%5Cdfrac%7Bah%7D%7Ba%2Bb%7D%3D%5Cdfrac%7Ba%5E2h%7D%7B2%28a%2Bb%29%7D%5C%5C+%5C%5C+%5C%5C%0A%5Cleft%5BCDE%5Cright%5D%3D%5Cdfrac%7Bbh_2%7D%7B2%7D%3D%5Cdfrac%7Bb%7D%7B2%7D%5Ctimes+%5Cdfrac%7Bbh%7D%7Ba%2Bb%7D%3D%5Cdfrac%7Bb%5E2h%7D%7B2%28a%2Bb%29%7D%5C%5C+%5C%5C+%5C%5C%0A%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%5C%5C+%5C%5C%0A%5Csqrt%7B%5BABE%5D%7D%3Da%5Csqrt%7B%5Cdfrac%7Bh%7D%7B2%28a%2Bb%29%7D%7D%5C%5C+%5C%5C+%5C%5C%0A%5Csqrt%7B%5BCDE%5D%7D%3Db%5Csqrt%7B%5Cdfrac%7Bh%7D%7B2%28a%2Bb%29%7D%7D%5C%5C+%5C%5C+%5C%5C%0A%5Csqrt%7B%5BABE%5D%7D%2B%5Csqrt%7B%5BCDE%5D%7D%3D%28a%2Bb%29%5Csqrt%7B%5Cdfrac%7Bh%7D%7B2%28a%2Bb%29%7D%7D%0A%0A)
![\sqrt{[ABE]}+\sqrt{[CDE]}=\sqrt{\dfrac{h(a+b)^2}{2(a+b)}}\\ \\ \\
\sqrt{[ABE]}+\sqrt{[CDE]}=\sqrt{\dfrac{h(a+b)}{2}}\\ \\ \\
\sqrt{[ABE]}+\sqrt{[CDE]}=\sqrt{[ABCD]}\\ \\ \\
\sqrt{[ABE]}+\sqrt{[CDE]}=\sqrt{\dfrac{h(a+b)^2}{2(a+b)}}\\ \\ \\
\sqrt{[ABE]}+\sqrt{[CDE]}=\sqrt{\dfrac{h(a+b)}{2}}\\ \\ \\
\sqrt{[ABE]}+\sqrt{[CDE]}=\sqrt{[ABCD]}\\ \\ \\](https://tex.z-dn.net/?f=%5Csqrt%7B%5BABE%5D%7D%2B%5Csqrt%7B%5BCDE%5D%7D%3D%5Csqrt%7B%5Cdfrac%7Bh%28a%2Bb%29%5E2%7D%7B2%28a%2Bb%29%7D%7D%5C%5C+%5C%5C+%5C%5C%0A%5Csqrt%7B%5BABE%5D%7D%2B%5Csqrt%7B%5BCDE%5D%7D%3D%5Csqrt%7B%5Cdfrac%7Bh%28a%2Bb%29%7D%7B2%7D%7D%5C%5C+%5C%5C+%5C%5C%0A%5Csqrt%7B%5BABE%5D%7D%2B%5Csqrt%7B%5BCDE%5D%7D%3D%5Csqrt%7B%5BABCD%5D%7D%5C%5C+%5C%5C+%5C%5C%0A)
AB || CD ====> m<EDC = m < EBA e m < DCE = m < EAB
Por ende (AAA) ya que os ángulos sao iguales os triángulos DEC e AEB sao semejantes
2)
a) Trace uma semireta paralela al segemento DB por o punto C
b) Prolongue AB hasta que se corte con la semireta (a) en um punto F
c) Os triangulos DEC, AEB e ACF sao semejantes, entao
3)
Usuário anônimo:
Si
Perguntas interessantes
Inglês,
11 meses atrás
Inglês,
11 meses atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás