Matemática, perguntado por Rebelde007, 9 meses atrás

Seja a matriz coluna A do tipo 3x1 definida pela lei i-j, e a matriz linha B do tipo 1x3 definida pela lei i.j, e C a matriz que resulta do produto AB, podemos afirmar que C é a matriz cujo elemento da segunda linha e segunda coluna é:
A) 0
B) 2
C) 4
D) 6​

Soluções para a tarefa

Respondido por GNeves11
5

Resposta: alternativa b)

Montagem das matrizes A e B:

A=\left[\begin{array}{ccc}a11\\a21\\a31\end{array}\right] =\left[\begin{array}{ccc}1-1\\2-1\\3-1\end{array}\right]= \left[\begin{array}{ccc}0\\1\\2\end{array}\right]

B=\left[\begin{array}{ccc}a11&a12&a13\\\end{array}\right]=\left[\begin{array}{ccc}1.1&1.2&1.3\\\end{array}\right] =\left[\begin{array}{ccc}1&2&3\end{array}\right]

A.B=C <=> C=A.B

Em multiplicação de matrizes, linhas da primeira matriz multiplicam as colunas da segunda matriz:

C=\left[\begin{array}{ccc}0\\1\\2\end{array}\right].\left[\begin{array}{ccc}1&amp;2&amp;3\end{array}\right]

C=\left[\begin{array}{ccc}0.1&amp;0.2&amp;0.3\\1.1&amp;1.2&amp;1.3\\2.1&amp;2.2&amp;2.3\end{array}\right]

C=\left[\begin{array}{ccc}0&amp;0&amp;0\\1&amp;2&amp;3\\2&amp;4&amp;6\end{array}\right]

O elemento da segunda linha e segunda coluna (a22) é 2


Rebelde007: Vc pode responder minhas outras perguntas? pf
Perguntas interessantes