Matemática, perguntado por gabrielwwz008p93knd, 1 ano atrás

Seja A=...(IMAGEM do EXERCÍCIO) então 2detA é:

Anexos:

Soluções para a tarefa

Respondido por JulioPlech
1

Resposta:

1

Explicação passo-a-passo:

det(a) = \begin{vmatrix}</p><p>   log_{3}(2)  &amp;  log_{3}(4)  &amp;  log_{3}(8)  &amp;   log_{3}(2)  &amp;  log_{3}(4) \\ log_{3}(16)  &amp;  log_{3}(32)  &amp;  log_{3}(64)   &amp;  log_{3}(16)  &amp;  log_{3}(32)\\ log_{3}(128)  &amp;  log_{3}(256)  &amp;  log_{3}(512)  &amp;  log_{3}(128)  &amp;  log_{3}(256)</p><p>\end{vmatrix} \\ det(a) =  log_{3}(2) . log_{3}(32) . log_{3}(512)  +  log_{3}(4) . log_{3}(64) . log_{3}(128)  +  log_{3}(8) . log_{3}(16) . log_{3}(256)  -  log_{3}(128) . log_{3}(32) . log_{3}(8)  -  log_{3}(256) . log_{3}(64) . log_{3}(2)  -  log_{3}(512) . log_{3}(16) . log_{3}(4)  \\ det(a) =  log_{3}(2) . log_{3}( {2}^{5} ) . log_{3}( {2}^{9} )  +  log_{3}( {2}^{2} ) . log_{3}( {2}^{6} ) . log_{3}( {2}^{7} )  +  log_{3}( {2}^{3} ) . log_{3}( {2}^{4} ) . log_{3}( {2}^{8} )  -  log_{3}( {2}^{7} ) . log_{3}( {2}^{5} ) . log_{3}( {2}^{3} )  -  log_{3}( {2}^{8} ) . log_{3}( {2}^{6} ) . log_{3}(2)  -  log_{3}( {2}^{9} ) . log_{3}( {2}^{4} ) . log_{3}( {2}^{2} )  \\ det(a) =  log_{3}(2) .5 log_{3}(2) .9 log_{3}(2)  + 2 log_{3}(2) .6 log_{3}(2) .7 log_{3}(2)  + 3 log_{3}(2) .4 log_{3}(2) .8 log_{3}(2)  - 7 log_{3}(2) .5 log_{3}(2) .3 log_{3}(2)  - 8 log_{3}(2) .6 log_{3}(2) . log_{3}(2)  - 9 log_{3}(2) .4 log_{3}(2) .2 log_{3}(2)  \\ det(a) = 45. {( log_{3}(2) )}^{3}  + 84 {( log_{3}(2)) }^{3}  + 96{( log_{3}(2)) }^{3} - 105{( log_{3}(2)) }^{3} - 48{( log_{3}(2)) }^{3} - 72{( log_{3}(2)) }^{3} \\ det(a) = {( log_{3}(2)) }^{3}(45 + 84 + 96 - 105 - 48 - 72) \\ det(a) = 0.({( log_{3}(2)) }^{3}) \\ det(a) = 0

Fazendo 2^det(a), temos:

 {2}^{0}  = 1

Perguntas interessantes