Seja a função f:R→R dada por f(x)=x²-2x+1. Podemos afirmar que:
Soluções para a tarefa
Em x = 1 a função possui valor 0, o que torna correta a alternativa b).
Para resolvermos esse exercício, temos que analisar a função. A função x² - 2x + 1 é uma função do segundo grau, que possui os coeficientes sendo a = 1, b = -2, e c = 1. Essa função possui o formato de uma parábola, e, pelo fato de seu coeficiente ser positivo, a concavidade é voltada para cima (em formato de U).
Para encontrarmos as raízes da função, ou os valores que tornam a função zero, devemos utilizar a fórmula de Bhaskara.
Aplicando os coeficientes a = 1, b = -2 e c = 1 na fórmula de Bhaskara, temos que:
raiz 1, 2 = (-(-2) +- √((-2^2) - 4*1*1))/2*1
raiz 1, 2 = (2 +- √(4 - 4))/2
raiz 1, 2 = (2 +- 0)/2
raiz 1, 2 = 2/2 = 1
Ou seja, as duas raízes da função, ou onde a função possui valor 0, são em x = 1.
Com isso, podemos concluir que em x = 1 a função possui valor 0, o que torna correta a alternativa b).
Para aprender mais, acesse https://brainly.com.br/tarefa/46850171