Matemática, perguntado por andressaalves5678, 5 meses atrás

Seja A = (a ij) a matriz quadrada de ordem 3, onde

______| i + 2, se i < j |
____aij | i + j, se i = j |
______| j - 1, se i > j |


O valor do determinante de A é igual a:

a) -40

b) 56

c) 40

d) -56

e) 0
Alguém me ajuda presiso do cálculo todo completo

Soluções para a tarefa

Respondido por Skoy
8

Desejamos calcular o determinante da matriz A, sendo ele uma matriz cuja a lei de formação é igual a:

i + 2, se i < j

i + j, se i = j

j - 1, se i > j

Sendo a matriz A dada da seguinte forma:

\Large\displaystyle\text{$\begin{gathered}\sf A_{3\times 3}= \left[\begin{array}{ccc}\tt a_{11}&amp;\tt a_{12}&amp;\tt a_{13}\\\tt a_{21}&amp;\tt a_{22}&amp;\tt a_{23}\\\tt a_{31}&amp;\tt a_{32}&amp;\tt a_{33}\end{array}\right]  \end{gathered}$}

Onde \large\displaystyle\text{$\begin{gathered}\tt a_{ij}  \end{gathered}$} sendo \large\displaystyle\text{$\begin{gathered}\tt i=linhas \end{gathered}$} e \large\displaystyle\text{$\begin{gathered}\tt j=colunas \end{gathered}$}. Com isso, temos que:

\Large\displaystyle\text{$\begin{gathered}\sf A_{3\times 3}= \left[\begin{array}{ccc}\tt i+j&amp;\tt i+2&amp;\tt i+2\\\tt j-1&amp;\tt i+j&amp;\tt i+2\\\tt j-1&amp;\tt j-1&amp;\tt i+j\end{array}\right]  \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}\sf A_{3\times 3}= \left[\begin{array}{ccc}\tt 1+1&amp;\tt 1+2&amp;\tt 1+2\\\tt 1-1&amp;\tt 2+2&amp;\tt 2+2\\\tt 1-1&amp;\tt 2-1&amp;\tt 3+3\end{array}\right]  \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}\therefore \sf A_{3\times 3}= \left[\begin{array}{ccc}\tt 2&amp;\tt 3&amp;\tt 3\\\tt 0&amp;\tt 4&amp;\tt 4\\\tt 0&amp;\tt 1&amp;\tt 6\end{array}\right]  \end{gathered}$}

Agora é só calcular o determinante, e para isso irei utilizar a Regra de Sarrus.

\Large\displaystyle\text{$\begin{gathered}\tt \det\left(\sf A_{3\times 3}\right)= \left|\begin{array}{ccc}\tt 2&amp;\tt 3&amp;\tt 3\\\tt 0&amp;\tt 4&amp;\tt 4\\\tt 0&amp;\tt 1&amp;\tt 6\end{array}\right| \left|\begin{array}{ccc}\tt 2&amp;\tt 3\\\tt 0&amp;\tt 4\\\tt 0&amp;\tt 1\end{array}\right|  \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}\tt \det\left(\sf A_{3\times 3}\right)= 48+0+0-\left(0+8+0\right) \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}\tt \det\left(\sf A_{3\times 3}\right)= 48-8 \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}\boxed{\tt \det\left(\sf A_{3\times 3}\right)= 40}\end{gathered}$}

Perguntas interessantes