Matemática, perguntado por rose2462012, 1 ano atrás

seguinte equação fração
x sobre x-3 - 6 sobre x+3 = 72 sobre x ao quadrado-9.

Soluções para a tarefa

Respondido por 3478elc
1

    x      -  6     =   72         mmc = x^2 - 9 = (x+3)(x-3)
  x - 3    x+3       x^2 - 9

       x(x+3) - 6(X-3) = 72
        x^2 +3x - 6x + 18 - 72 = 0
        x^2 - 3x - 54 = 0

delta = (-3)^2 - 4.1.(-54)= 9 + 216= 225

x= 3 +/- V225 ==> x = 3 +/- 15
           2.1                        2

x1= 3 + 15 ==> x1 = 9
          2

x1= 3 - 15 ==> x2 = - 6
          2                                



Respondido por AlineB
1
 \frac{x }{x - 3} -  \frac{6}{x + 3} =  \frac{72}{ x^{2} - 9}

Primeiro você precisa tirar o mmc de todos..

o mmc será = x² - 9 
Depois de você dividir pelo de baixo e multiplicar pelo de cima, pode cortar o denominador..

 \frac{ x^{. x + 3}  }{x - 3} - \frac{ 6^{. x - 3} }{x + 3} = \frac{72}{ x^{2} - 9}

Vai ficar assim...

x² + 3x - 6x + 18 = 72
x²  - 3x - 54 = 0

Agora é só fazer por báskara..
Δ = b² - 4ac
9 - 4.1. (-54)
225 

-b ± √Δ 
    2a

3± 15   --> x'= 9   x"= -6
    2
Perguntas interessantes