Matemática, perguntado por stephaniehisto5597, 6 meses atrás

Sebe_ Se que 3x+3y=7 se x =2m+ 1 e y= m-3 determine o valor de m de x e de y.

Soluções para a tarefa

Respondido por CyberKirito
7

 \Large\boxed{\begin{array}{l}\sf 3x+3y=7\\\sf 3\cdot(2m+1)+3\cdot(m-3)=7\\\sf 6m+3+3m-9=7\\\sf 9m-6=7\\\sf 9m=7+6\\\sf 9m=13\\\sf m=\dfrac{13}{9}\\\\\sf x=2m+1\\\sf x=2\cdot\bigg(\dfrac{13}{9}\bigg)+1\\\sf x=\dfrac{26}{9}+1=\dfrac{35}{9}\\\\\sf y=\dfrac{13}{9}-3\\\\\sf y=\dfrac{13-27}{9}\\\\\sf y=-\dfrac{14}{9}\end{array}}

Respondido por MiguelCyber
12

\Large\boxed {\begin{array}{l}       \displaystyle \sf C\acute{a}lculo\:do\:valor\:de\:m :\\\\\displaystyle \sf3x+3y=7\\\\\displaystyle \sf   3   \cdot (2m+1)+3\cdot(m-3)=7\\\\\displaystyle \sf 6m +3+3m-9=7  \\\\\displaystyle \sf 9m-6=7\\\\\displaystyle \sf 9m = 7+6\\\\\displaystyle \sf 9=13\\\\ \displaystyle \sf m=\dfrac{13}{9}     \sf\end{array}}

\Large\boxed {\begin {array}{l} \displaystyle \sf C\acute{a}lculo\:do\:valor\:de\:x :\\\\\displaystyle\sf x=2m+1 \\ \\ \displaystyle \sf x=2\cdot  \left( \dfrac{13}{9} \right) +1\\\\\displaystyle\sf x=\dfrac{26}{9}   +1=\dfrac{35}{9}   \sf\end{array}}

\Large\boxed{\begin{array}{l} \displaystyle\sf C\acute{a}lculo\:do\:valor\:de\:y:\\\\\displaystyle \sf y=\dfrac{13}{9}    -3\\\\\displaystyle\sf y=\dfrac{13-27}{9}\\\\\displaystyle \sf y=-\dfrac{14}{9}      \sf\end{array}}

Quer saber mais? acesse:

  • https://brainly.com.br/tarefa/49567660
  • https://brainly.com.br/tarefa/13228893
Anexos:

AngusTJones: Por gentileza, você poderia me ajudar em alguns exercícios de matemática? agradeço desde já !
MiguelCyber: Olá AngusTJones Boa tarde tudo bem? sua pergunta já foi respondida,Bons estudos!!
Perguntas interessantes