Matemática, perguntado por miqueiasdias3536, 4 meses atrás

Se z = 3- 3i e w = 1+ i são números números complexos, então z/w é:
a) 4 – 3i
b) 4 + 3i
c) -3i
d) 3i

Soluções para a tarefa

Respondido por CyberKirito
4

\large\boxed{\begin{array}{l}\rm z=3-3i~~w=1+i\\\rm \dfrac{z}{w}=\dfrac{(3-3i)}{(1+i)}\cdot\dfrac{(1-i)}{(1-i)}\\\\\rm \dfrac{z}{w}^=\dfrac{3-3i-3i+3i^2}{1^2-i^2}\\\\\rm \dfrac{z}{w}=\dfrac{\backslash\!\!\!3-6i-\backslash\!\!\!3}{1-(-1)}\\\\\rm\dfrac{z}{w}=\dfrac{-6i}{1+1}\\\\\rm\dfrac{z}{w}=\dfrac{-6i}{2}\\\\\rm \dfrac{z}{w}=-3i\\\huge\boxed{\boxed{\boxed{\boxed{\rm\dagger\red{\maltese}~\blue{alternativa~c}}}}}\end{array}}

Perguntas interessantes