Matemática, perguntado por GuilhermeIF157, 5 meses atrás

Se z = 1 + i, então w = z^16 na forma trigonométrica e na forma algébrica é, respectivamente:

( ) w = 256(cos⁡2 π + isen2π) e w = 256.
( ) w = 2^16(cos⁡2 π + isen2π) e w = 2^16.
( ) w = 256(cos⁡4 π + isen4π) e w = 2^16.
( ) w = 2^16(cos⁡4 π + isen4π) e w = 256.

Soluções para a tarefa

Respondido por auditsys
0

Resposta:

\textsf{letra A}

Explicação passo a passo:

\mathsf{z = 1 + i}

\mathsf{\rho = \sqrt{a^2 + b^2}}

\mathsf{\rho = \sqrt{1^2 + 1^2}}

\mathsf{\rho = \sqrt{1 + 1}}

\mathsf{\rho = \sqrt{2}}

\mathsf{sen\:\Theta = \dfrac{b}{\rho} = \dfrac{1}{\sqrt{2}} = \dfrac{\sqrt{2}}{2}}

\mathsf{cos\:\Theta = \dfrac{a}{\rho} = \dfrac{1}{\sqrt{2}} = \dfrac{\sqrt{2}}{2}}

\mathsf{z = \sqrt{2}\left(cos\:\dfrac{\pi }{4} + i\:sen\:\dfrac{\pi }{4}\right)}

\mathsf{w = z^{16}}

\mathsf{w = \left(\sqrt{2}\left(cos\:\dfrac{\pi }{4} + i\:sen\:\dfrac{\pi }{4}\right)\right)^{16}}

\mathsf{w = (\sqrt{2})^{16}\left(cos\:\dfrac{16\pi }{4} + i\:sen\:\dfrac{16\pi }{4}\right)\right)}

\boxed{\boxed{\mathsf{w = 256\:(cos\:2 \pi + i\:sen\:2\pi)}}}

\mathsf{w = 256\:(1 + 0)}

\boxed{\boxed{\mathsf{w = 256}}}

Perguntas interessantes