Se x+y+z=10 e xy+yz+xz=20;calcule x2+y2+z2.
Anexos:

Soluções para a tarefa
Respondido por
29
primeiramente elevamos x+y+z ao quadrado:
(x+y+z)²=10²
(x+y+z).(x+y+z)=100
x²+x.y+x.z+y.x+y²+y.z+z.x+z.y+z²=100
x²+y²+z²+x.y+x.y+x.z+x.z+y.z+y.z=100
x²+y²+z²+2.x.y+2.x.z+2.y.z=100
colocando 2 em evidência:
x²+y²+z²+2(x.y+x.z+y.z)=100
x²+y²+z²+2.20=100
x²+y²+z²+40=100
x²+y²+z²=60
(x+y+z)²=10²
(x+y+z).(x+y+z)=100
x²+x.y+x.z+y.x+y²+y.z+z.x+z.y+z²=100
x²+y²+z²+x.y+x.y+x.z+x.z+y.z+y.z=100
x²+y²+z²+2.x.y+2.x.z+2.y.z=100
colocando 2 em evidência:
x²+y²+z²+2(x.y+x.z+y.z)=100
x²+y²+z²+2.20=100
x²+y²+z²+40=100
x²+y²+z²=60
Perguntas interessantes
Artes,
11 meses atrás
Matemática,
11 meses atrás
História,
11 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Química,
1 ano atrás