Matemática, perguntado por 3rickcost4, 11 meses atrás

Se (x + y)2 = 90 e x2 + y2 = 30, determine o valor de xy.

Soluções para a tarefa

Respondido por Geishy
0

Resposta:

(x+y)×9=90eX9+yq.

eu acho que está certo, espero ter ajudado

Respondido por matematicman314
0

O valor de xy é 30.

\dotfill

Para tal, usaremos as ideias relacionadas ao produto notável quadrado da soma de dois termos. Vamos recordar o que diz esse produto:

(x + y)² = x² + 2xy + y²

" O quadrado da soma de dois termos é dado pelo quadrado de soma do primeiro termo, mais duas vezes o primeiro pelo segundo, mais o quadrado do segundo termo"

Desse modo,

(x + y)² = x² + 2xy + y² = 90

Contudo, pelo enunciado, x² + y² = 30. Substituindo:

(x² + y²) + 2xy = 90

30 + 2xy = 90

2xy = 60

xy = 30

Com isso, o valor de xy é 30.

\dotfill

Veja também:

https://brainly.com.br/tarefa/9781577

https://brainly.com.br/tarefa/24337964

Anexos:
Perguntas interessantes