Matemática, perguntado por knardeli, 1 ano atrás

Se x = arctg (-Raiz15) calcule: 2sec²x - 12 cosx - 4*(Raiz15)*senx

Soluções para a tarefa

Respondido por Lukyo
1
\large\begin{array}{l} \mathsf{x=arctg\big(\!\!-\sqrt{15}\big)}\\\\ \mathsf{tg\,x=-\sqrt{15}}\\\\ \mathsf{\dfrac{sen\,x}{cos\,x}=-\sqrt{15}}\\\\ \mathsf{sen\,x=-\sqrt{15}\,cos\,x} \end{array}


\large\begin{array}{l} \textsf{Eleve ao quadrado os dois lados da igualdade acima:}\\\\ \mathsf{(sen\,x)^2=\big(\!\!-\sqrt{15}\,cos\,x\big)^2}\\\\ \mathsf{sen^2\,x=\big(\!\!-\sqrt{15}\big)^2 cos^2\,x}\\\\ \mathsf{sen^2\,x=15\,cos^2\,x}\qquad\qquad\textsf{(mas }\mathsf{sen^2\,x=1-cos^2\,x}\textsf{)}\\\\ \mathsf{1-cos^2\,x=15\,cos^2\,x}\\\\ \mathsf{1=15\,cos^2\,x+cos^2\,x}\\\\ \mathsf{16\,cos^2\,x=1} \end{array}

\large\begin{array}{l} \mathsf{cos^2\,x=\dfrac{1}{16}}\\\\ \mathsf{cos\,x=\pm \sqrt{\dfrac{1}{16}}}\\\\ \mathsf{cos\,x=\pm\,\dfrac{\,1\,}{4}}\\\\ \end{array}


\large\begin{array}{l} \textsf{Mas lembremos: o que \'e x? \'E o arco-tangente de }\mathsf{-\sqrt{15}}.\\\\ \textsf{A fun\c{c}\~ao arco-tangente fornece valores entre }\mathsf{-\dfrac{\,\pi\,}{2}}\textsf{ e }\mathsf{\dfrac{\,\pi\,}{2}.}\\\\\textsf{Neste intervalo, o cosseno \'e sempre positivo. Ent\~ao,}\\\\ \boxed{\begin{array}{c}\mathsf{cos\,x=\dfrac{\,1\,}{4}} \end{array}} \end{array}


\large\begin{array}{l} \bullet~~\textsf{Encontrando o seno de x:}\\\\ \mathsf{tg\,x=\dfrac{sen\,x}{cos\,x}}\\\\ \mathsf{sen\,x=cos\,x\cdot tg\,x}\\\\ \mathsf{sen\,x=\dfrac{1}{4}\cdot \big(\!\!-\sqrt{15}\big)}\\\\ \boxed{\begin{array}{c}\mathsf{sen\,x=-\,\dfrac{\sqrt{15}}{4}} \end{array}} \end{array}


\large\begin{array}{l} \bullet~~\textsf{Encontrando a secante de x:}\\\\ \mathsf{sec\,x=\dfrac{1}{cos\,x}}\\\\ \mathsf{sec\,x=\dfrac{~1~}{\frac{1}{4}}}\\\\ \boxed{\begin{array}{c}\mathsf{sec\,x=4} \end{array}} \end{array}


\large\begin{array}{l} \bullet~~\textsf{Por \'ultimo, vamos calcular a express\~ao pedida:}\\\\ \mathsf{2\,sec^2\,x-12\,cos\,x-4\sqrt{15}\,sen\,x}\\\\ =\mathsf{2\cdot (4)^2-12\cdot \left(\dfrac{1}{4}\right)-4\sqrt{15}\cdot \bigg(\!\!-\dfrac{\sqrt{15}}{4}\bigg)}\\\\ =\mathsf{2\cdot 16-\dfrac{12}{4}+\dfrac{\diagup\!\!\!\! 4\sqrt{15}\cdot \sqrt{15}}{\diagup\!\!\!\! 4}}\\\\ =\mathsf{32-3+\big(\sqrt{15}\big)^{\!2}}\\\\ =\mathsf{32-3+15}\\\\ =\mathsf{44}\qquad\checkmark \end{array}


\large\begin{array}{l} \textsf{D\'uvidas? Comente.}\\\\\\ \textsf{Bons estudos! :-)} \end{array}


Lukyo: Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/7320629
knardeli: Vlww brother!
Lukyo: =)
Perguntas interessantes