Matemática, perguntado por emilyvic1, 1 ano atrás

Se X=0,333.. e Y=0,222... As frações geratrizes de X e Y são:

Soluções para a tarefa

Respondido por AnnaMattos11
0
X=
 \frac{3}{666}  =  \frac{1}{222}
Y=
 \frac{2}{999}
Respondido por morgadoduarte23
1
Boa tarde,

Para X

Como o período da dízima é 1 (só há um algarismo que se repete, que é o 3) fazemos

                    10 * X =  3,3333     (a)

subtraindo           X = 0,33333
---------------------------------------
                        9 X =  3, 0000

⇔ X = 3 / 9  ⇔   X = 1 / 3   esta fração gera o X

+++++++++++++++++

Para Y

Como o período da dízima é 1 (só há um algarismo que se repete, é o 2
fazemos:

                    10 * Y = 2,2222     (a)

subtraindo           Y = 0,2222
---------------------------------------
                        9 X =  2, 0000

⇔ Y = 2 / 9  ⇔   = 2 / 9     esta fração gera o Y

++++++++++++++++

Repara que 3,3333 e 2,222 são os resultados de multiplicar por 10 cada um dos números X e Y iniciais

+++++++++++++++

(NOTA : sinal ( * ) é multiplicação  ;  sinal ( / ) é divisão   ;  ( ^) sinal de potência )

++++++++++++++++

Espero ter ajudado.Procuro  explicar como se faz e não apenas apresentar rápidas soluções.Sei que ganho menos pontos, mas pretendo ensinar devidamente o que sei.
Esforçando - me por entregar a melhor resposta possível.
Qualquer dúvida, envie-me comentário.Bom estudo

Perguntas interessantes