Se u = −8i + 4j e v=7i − 6j, encontre a projeção vetorial de u sobre v e de v sobre u.
Soluções para a tarefa
Respondido por
1
u=(-8,4,0)
v=(7,-6,0)
|u|=√(-8)²+4²+0²=√80
|v|=√7²+(-6)²+0²=√85
<u,v>=<v,u>=-80
Então:
![proju_{v} = \frac{\ \textless \ u,v\ \textgreater \ }{|v|^2} v \\ \\ proju_{v} == \frac{-56-24+0}{ (\sqrt{85})^2 }(7,-6,0) \\ \\ proju_{v} = \frac{-80}{85} (7,-6,0) \\ \\ proju_{v} = \frac{-16}{17} (7,-6,0) \\ \\ proju_{v} =(- \frac{112}{17}, \frac{96}{17},0) proju_{v} = \frac{\ \textless \ u,v\ \textgreater \ }{|v|^2} v \\ \\ proju_{v} == \frac{-56-24+0}{ (\sqrt{85})^2 }(7,-6,0) \\ \\ proju_{v} = \frac{-80}{85} (7,-6,0) \\ \\ proju_{v} = \frac{-16}{17} (7,-6,0) \\ \\ proju_{v} =(- \frac{112}{17}, \frac{96}{17},0)](https://tex.z-dn.net/?f=proju_%7Bv%7D+%3D+%5Cfrac%7B%5C+%5Ctextless+%5C+u%2Cv%5C+%5Ctextgreater+%5C+%7D%7B%7Cv%7C%5E2%7D+v+%5C%5C+%5C%5C+proju_%7Bv%7D+%3D%3D+%5Cfrac%7B-56-24%2B0%7D%7B+%28%5Csqrt%7B85%7D%29%5E2+%7D%287%2C-6%2C0%29+%5C%5C+%5C%5C+proju_%7Bv%7D+%3D+%5Cfrac%7B-80%7D%7B85%7D+%287%2C-6%2C0%29+%5C%5C+%5C%5C+proju_%7Bv%7D+%3D+%5Cfrac%7B-16%7D%7B17%7D+%287%2C-6%2C0%29+%5C%5C+%5C%5C+proju_%7Bv%7D+%3D%28-+%5Cfrac%7B112%7D%7B17%7D%2C+%5Cfrac%7B96%7D%7B17%7D%2C0%29)
E a proj de v sobre u:
![projv_{u} = \frac{\ \textless \ v,u\ \textgreater \ }{|u|^2} u \\ \\ projv_{u} = \frac{-80}{ (\sqrt{80})^2 } (-8,4,0) \\ \\ projv_{u} = \frac{-80}{80} (-8,4,0) \\ \\ projv_{u} =(8,-4,0) projv_{u} = \frac{\ \textless \ v,u\ \textgreater \ }{|u|^2} u \\ \\ projv_{u} = \frac{-80}{ (\sqrt{80})^2 } (-8,4,0) \\ \\ projv_{u} = \frac{-80}{80} (-8,4,0) \\ \\ projv_{u} =(8,-4,0)](https://tex.z-dn.net/?f=+projv_%7Bu%7D+%3D+%5Cfrac%7B%5C+%5Ctextless+%5C+v%2Cu%5C+%5Ctextgreater+%5C+%7D%7B%7Cu%7C%5E2%7D+u+%5C%5C++%5C%5C++projv_%7Bu%7D+%3D+%5Cfrac%7B-80%7D%7B+%28%5Csqrt%7B80%7D%29%5E2+%7D+%28-8%2C4%2C0%29+%5C%5C++%5C%5C++projv_%7Bu%7D+%3D+%5Cfrac%7B-80%7D%7B80%7D+%28-8%2C4%2C0%29+%5C%5C++%5C%5C++projv_%7Bu%7D+%3D%288%2C-4%2C0%29)
v=(7,-6,0)
|u|=√(-8)²+4²+0²=√80
|v|=√7²+(-6)²+0²=√85
<u,v>=<v,u>=-80
Então:
E a proj de v sobre u:
Perguntas interessantes
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Sociologia,
1 ano atrás
História,
1 ano atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás