Se SENO X = 2/3 e X está no 1º quadrante, encontre o valor da Cotg ..
Soluções para a tarefa
Respondido por
2
Olá,
senx = 2/3
Sabe-se que cotgx é o inverso da tgx, ou seja, cotgx = 1/tgx ou então, cotgx = cosx/senx
Vamos utilizar a 2ª que é melhor, mas para isso precisamos do cosx. Vamos encontrá-lo:
sen²x + cos²x = 1
(2/3)² + cos²x = 1
4/9 + cos²x = 1
cos²x = 1 - 4/9
cos²x = 5/9
cosx = √5/√9
cosx = √5/3
Sendo cotgx = cosx/senx, temos:
cotgx = (√5/3)/2/3
cotgx = √5/3*3/2
cotgx = 3√5/6
cotgx = √5/2
Bons estudos ;)
senx = 2/3
Sabe-se que cotgx é o inverso da tgx, ou seja, cotgx = 1/tgx ou então, cotgx = cosx/senx
Vamos utilizar a 2ª que é melhor, mas para isso precisamos do cosx. Vamos encontrá-lo:
sen²x + cos²x = 1
(2/3)² + cos²x = 1
4/9 + cos²x = 1
cos²x = 1 - 4/9
cos²x = 5/9
cosx = √5/√9
cosx = √5/3
Sendo cotgx = cosx/senx, temos:
cotgx = (√5/3)/2/3
cotgx = √5/3*3/2
cotgx = 3√5/6
cotgx = √5/2
Bons estudos ;)
gabrielwillian236:
Vlw maninho
Perguntas interessantes