Se precisar é um número primo e p | aⁿ, com n>0. Prove que pⁿ | aⁿ.
Otavioalemos:
Se p é um número primo e p | aⁿ, com n>0. Prove que pⁿ | aⁿ. Teoria dos numeros.
Soluções para a tarefa
Respondido por
0
Seja
onde
sao números primos para todo ![i\in[1,m]\subset \mathbb N i\in[1,m]\subset \mathbb N](https://tex.z-dn.net/?f=i%5Cin%5B1%2Cm%5D%5Csubset+%5Cmathbb+N)
![p|a^n\equiv a^n=p\times k\\ \\ \\
(a_1\times \cdots \times a_m)^n=p\times k\\ \\ \\
\displaystyle
a_i\times \left(a_i^{n-1}\times\prod_{\substack{j=1\\j\neq i}}^m a_j^n\right)=p\times k\\ \\ \\
p=a_i\\ \\ \\
\texttt{Agora veja isto}\\ \\ \\
a^n=a_1^n\times a_2^n\times\cdots \times a_i^n\times\cdots\times a_m^n\\ \\ \\
a^n=a_i^n\times \prod_{\substack{j=1\\j\neq i}}^m a_j^n\\ \\ \\
a^n=p^n\times \prod_{\substack{j=1\\j\neq i}}^m a_j^n\\ \\ \\
a^n=p^n\times k'\equiv p^n|a^n p|a^n\equiv a^n=p\times k\\ \\ \\
(a_1\times \cdots \times a_m)^n=p\times k\\ \\ \\
\displaystyle
a_i\times \left(a_i^{n-1}\times\prod_{\substack{j=1\\j\neq i}}^m a_j^n\right)=p\times k\\ \\ \\
p=a_i\\ \\ \\
\texttt{Agora veja isto}\\ \\ \\
a^n=a_1^n\times a_2^n\times\cdots \times a_i^n\times\cdots\times a_m^n\\ \\ \\
a^n=a_i^n\times \prod_{\substack{j=1\\j\neq i}}^m a_j^n\\ \\ \\
a^n=p^n\times \prod_{\substack{j=1\\j\neq i}}^m a_j^n\\ \\ \\
a^n=p^n\times k'\equiv p^n|a^n](https://tex.z-dn.net/?f=p%7Ca%5En%5Cequiv+a%5En%3Dp%5Ctimes+k%5C%5C+%5C%5C+%5C%5C%0A%28a_1%5Ctimes+%5Ccdots+%5Ctimes+a_m%29%5En%3Dp%5Ctimes+k%5C%5C+%5C%5C+%5C%5C%0A%5Cdisplaystyle%0Aa_i%5Ctimes+%5Cleft%28a_i%5E%7Bn-1%7D%5Ctimes%5Cprod_%7B%5Csubstack%7Bj%3D1%5C%5Cj%5Cneq+i%7D%7D%5Em+a_j%5En%5Cright%29%3Dp%5Ctimes+k%5C%5C+%5C%5C+%5C%5C%0Ap%3Da_i%5C%5C+%5C%5C+%5C%5C%0A%5Ctexttt%7BAgora+veja+isto%7D%5C%5C+%5C%5C+%5C%5C%0Aa%5En%3Da_1%5En%5Ctimes+a_2%5En%5Ctimes%5Ccdots+%5Ctimes+a_i%5En%5Ctimes%5Ccdots%5Ctimes+a_m%5En%5C%5C+%5C%5C+%5C%5C%0Aa%5En%3Da_i%5En%5Ctimes+%5Cprod_%7B%5Csubstack%7Bj%3D1%5C%5Cj%5Cneq+i%7D%7D%5Em+a_j%5En%5C%5C+%5C%5C+%5C%5C%0Aa%5En%3Dp%5En%5Ctimes+%5Cprod_%7B%5Csubstack%7Bj%3D1%5C%5Cj%5Cneq+i%7D%7D%5Em+a_j%5En%5C%5C+%5C%5C+%5C%5C%0Aa%5En%3Dp%5En%5Ctimes+k%27%5Cequiv+p%5En%7Ca%5En)
Perguntas interessantes