Matemática, perguntado por camilavalina, 1 ano atrás

Se log 2 = a e log 3 = b, calcule em função de a e b o valor de log3√1,08

Soluções para a tarefa

Respondido por Niiya
1
\sqrt{a*b*c}=\sqrt{a}*\sqrt{b}*\sqrt{c}
\sqrt[n]{a^{x}}=a^{x/n}

log_{b}(a*c)=log_{b}(a)+log_{b}(c)
log_{b}(a^{n})=n*log_{b}(a)
__________________________

log_{3}\sqrt{1,08}=log_{3}\sqrt{108/100}
log_{3}\sqrt{1,08}=log_{3}[(1/10)\sqrt{108}]
log_{3}\sqrt{1,08}=log_{3}[(1/10)\sqrt{4*9*3}]
log_{3}\sqrt{1,08}=log_{3}[(1/10)*2*3* \sqrt{3}]
log_{3}\sqrt{1,08}=log_{3}[10^{-1}*2*3*3^{1/2}]
log_{3}\sqrt{1,08}=log(10^{-1}*2*3*3^{1/2})/log(3)
log_{3}\sqrt{1,08}=(log(10^{-1})+log(2)+log(3)+log(3)^{1/2})/b
log_{3}\sqrt{1,08}=[[-1]*log(10)+a+b+(1/2)*log(3)]/b
log_{3}\sqrt{1,08}=([-1]*1 + a + b + (1/2)b])/b
log_{3}\sqrt{1,08}=(- 1 + a + b + [b / 2]))/b
log_{3}\sqrt{1,08}=[(-2+2a+2b+b)/2]/b
log_{3}\sqrt{1,08}=(2a+3b-2)/2b
Perguntas interessantes