se log 2= 0,3 , log 3= 0,5
log 5= 0,7 e log 7= 0,85 , responda:
(exercicios na foto)
Soluções para a tarefa
Resposta:
e) 1,5
f) ~ 0,933
g) ~ 0,659
h) 6
i) 0,6
Explicação passo-a-passo:
e)
log20 84=
log20 (2^2).3.7=
2.log20 2 + log20 3 + log20 7=
2.(log2 / log 20) + (log 3 / log 20) + (log 7 / log 20) =
2.(log2 / log 5. 2^2) + (log 3 / log 5. 2^2) + (log 7 / log 5. 2^2) =
2.(log2 / (log 5 + 2.log 2)) + (log 3 / (log 5 + 2.log 2)) + (log 7 / (log 5 + 2.log 2)) =
2.(0,3 / (0,7 + 2. 0,3)) + (0,5 / (0,7 + 2. 0,3)) + (0,85 / (0,7 + 2. 0,3)) =
0,6/1,3 + 0,5/1,3 + 0,85/1,3 =
1,95/1,3 = 1,5
f)
log32 25=
log32 5^2
2.log32 5=
2.(log 5 / log 32)=
2.(log 5 / log 2^5)=
2.(log 5 / 5.log 2)=
2.(0,7 / 5. 0,3)=
1,4/ 1,5=
~ 0,933
g)
log160 28=
log160 2^2. 7=
log160 2^2 + log160 7=
2.log160 2 + log160 7=
2.(log 2 / log 160) + (log 7 / log 160)=
(2.log 2 + log 7) / log 160=
(2.log 2 + log 7) / log 2^5. 5=
(2.log 2 + log 7) / (5.log 2 + log 5)=
(2. 0,3 + 0,85) / (5. 0,3 + 0,7)=
1,45/2,2=
~ 0,659
h)
lograiz(3) 32=
lograiz(3) 2^5=
5.lograiz(3) 2=
5.(log 2 / log raiz(3))=
5.(log 2 / log 3^(1/2))=
5.(log 2 / (1/2).log 3)=
5.(0,3 / 0,5.0,5)=
1,5/0,25= 6
i)
log3raiz(3) 2.raiz(2)=
log 2.raiz(2) / log 3.raiz(3)=
(log 2 + log raiz(2)) / (log 3 + log raiz(3))=
(log 2 + log 2^(1/2)) / (log 3 + log 3^(1/2))=
(log 2 + 0,5. log 2) / (log 3 + 0,5. log 3)=
(0,3 + 0,5. 0,3) / (0,5 + 0,5. 0,5)=
0,45/0,75= 0,6
Blz?
Abs :)