Se f(x)= x/2 +2 e g(x)= raiz de x+1, calcule fog(3) e gof(10)
Soluções para a tarefa
Respondido por
24
f(x) = x² + 2x + 1
f[g(x)] = [g(x)]² + 2.[g(x)] + 1
f[g(x)] = [– 2x – 1]² + 2.[– 2x – 1] + 1
f[g(x)] = 4x² + 4x + 1 – 4x – 2 + 1
f[g(x)] = 4x²
g(x) = – 2x – 1
g[f(x)] = – 2.[f(x)] – 1
g[f(x)] = – 2.[x² + 2x + 1] – 1
g[f(x)] = – 2x² – 4x – 2 – 1
g[f(x)] = – 2x² – 4x – 3
Realizando a composição de funções, encontramos que f[g(x)] = 4x² e g[f(x)] = – 2x² – 4x – 3.
f[g(x)] = [g(x)]² + 2.[g(x)] + 1
f[g(x)] = [– 2x – 1]² + 2.[– 2x – 1] + 1
f[g(x)] = 4x² + 4x + 1 – 4x – 2 + 1
f[g(x)] = 4x²
g(x) = – 2x – 1
g[f(x)] = – 2.[f(x)] – 1
g[f(x)] = – 2.[x² + 2x + 1] – 1
g[f(x)] = – 2x² – 4x – 2 – 1
g[f(x)] = – 2x² – 4x – 3
Realizando a composição de funções, encontramos que f[g(x)] = 4x² e g[f(x)] = – 2x² – 4x – 3.
Laristyles14:
No f(×) é x sobre 2
Perguntas interessantes
Matemática,
9 meses atrás
Português,
9 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Administração,
1 ano atrás
Matemática,
1 ano atrás