se f (x) =5x2 + ax + b, com a= b, f (a) = b e f ( b) = a, qual é o valor de a+b?
Soluções para a tarefa
Respondido por
6
por hipótese eu testei
f(0) = 5*0^2 + a*0 + b
f(0) = b
Lembrando que
f(a) = b
a=0
(o problema é simetrico mas vamos definir como a=0)
lembre-se
f(b) = 0
ou seja
f(b) = 5b^2 + 0*b + b = 0
resolvendo você tem que
b = -(1/5) & 0 (desconsidere o 0 )
a + b = -(1/5)
(Lembrando que 0 é uma solução tanto para b como para a, então consideramos apenas pois o problema diz que a é diferente de b b= -1/5 e a=0)
f(0) = 5*0^2 + a*0 + b
f(0) = b
Lembrando que
f(a) = b
a=0
(o problema é simetrico mas vamos definir como a=0)
lembre-se
f(b) = 0
ou seja
f(b) = 5b^2 + 0*b + b = 0
resolvendo você tem que
b = -(1/5) & 0 (desconsidere o 0 )
a + b = -(1/5)
(Lembrando que 0 é uma solução tanto para b como para a, então consideramos apenas pois o problema diz que a é diferente de b b= -1/5 e a=0)
Perguntas interessantes
Geografia,
10 meses atrás
Matemática,
10 meses atrás
Física,
10 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Geografia,
1 ano atrás