Matemática, perguntado por sk23mi, 1 ano atrás

Se f(x) 3x³-2x²-x+4/2x²+4x+2 entam lim x-> -1 f(x) é igual a : RESOLUÇÃO????

Soluções para a tarefa

Respondido por avengercrawl
1
Olá

 \lim_{x \to \--1}  \frac{3x^3-2x^2-x+4}{2x^2+4x+2}



Fazendo a divisão de polinomios
3x³-2x²-x+4 ÷ x+1 = 3x²-5x+4
2x²+4x+2    ÷ x+1 = 2x+2

Fica

\lim_{x \to \--1} \frac{(x+1)(3x^2-5x+4)}{(x+1)(2x+2)}


Simplificando

\lim_{x \to \--1} \frac{3x^2-5x+4}{2x+2}= \frac{3*(-1)^2-5*(-1)+4}{2*(-1)+2} = \frac{3+5+4}{-2+2} = \frac{12}{0}= \infty

sk23mi: VLW MANOO
Respondido por 3478elc
0



3x³-2x²-x+4 = 3x³-2x²-x+4   dividindo ambas por x +1
2(x²+2x+1)     2(x + 1)²


2(x + 1)² = 2(x+1) 
   (x + 1)


   3x³-2x²-x+4   x+1
- 3x³-3x²           3x² - 5x + 4
       -5x²-x
        5x²+5x 
                4x+4
                -4x-4
                     0
======================================================

 3x² - 5x + 4  ==>  3(-1)² - 5(-1) + 4 ==> 3+5+4 ==> 12 = ∞
   2(x+1)                         2(-1+1)               2.0             0
Perguntas interessantes