Se f(x)= 25^x-1 e g(x)= log de x na base 5, então f(g(x)) ?
vailuquinha:
f(x)= 25^(x-1), correto?! O (x-1) é expoente?!
Soluções para a tarefa
Respondido por
3
Funções: ![f(x)= 25^{x-1} ~~~~~~~~~~~ e ~~~~~~~~~~~ g(x)= log_5 x f(x)= 25^{x-1} ~~~~~~~~~~~ e ~~~~~~~~~~~ g(x)= log_5 x](https://tex.z-dn.net/?f=f%28x%29%3D+25%5E%7Bx-1%7D+%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E+e+%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E+g%28x%29%3D+log_5+x)
Sendo a
, basta substituir no lugar do x a função
para encontrar a composta
. Observe,
![f(x)= 25^{x-1} \\ \\
f(g(x))= 25^{log_5 x - 1} = (5^2)^{log_5 x - 1} = 5^{2 \cdot log_5 x -2} f(x)= 25^{x-1} \\ \\
f(g(x))= 25^{log_5 x - 1} = (5^2)^{log_5 x - 1} = 5^{2 \cdot log_5 x -2}](https://tex.z-dn.net/?f=f%28x%29%3D+25%5E%7Bx-1%7D++%5C%5C+%5C%5C%0Af%28g%28x%29%29%3D+25%5E%7Blog_5+x+-+1%7D+%3D+%285%5E2%29%5E%7Blog_5+x+-+1%7D+%3D+5%5E%7B2+%5Ccdot+log_5+x+-2%7D)
Aplicando algumas propriedades:
![f(g(x))= 5^{2 \cdot log_5 x -2} = \frac{1}{25} \cdot 5^{2 \cdot log_5 x} ~~~~~~~* \\ \\
f(g(x))= \frac{1}{25} \cdot 5^{log_5 x^2} ~~~~~~~~~~~~~~~~~~~~~~~~ ** \\ \\
f(g(x))= \frac{1}{25} \cdot x^2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ *** \\ \\ f(g(x))= 5^{2 \cdot log_5 x -2} = \frac{1}{25} \cdot 5^{2 \cdot log_5 x} ~~~~~~~* \\ \\
f(g(x))= \frac{1}{25} \cdot 5^{log_5 x^2} ~~~~~~~~~~~~~~~~~~~~~~~~ ** \\ \\
f(g(x))= \frac{1}{25} \cdot x^2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ *** \\ \\](https://tex.z-dn.net/?f=f%28g%28x%29%29%3D+5%5E%7B2+%5Ccdot+log_5+x+-2%7D+%3D++%5Cfrac%7B1%7D%7B25%7D+%5Ccdot+5%5E%7B2+%5Ccdot+log_5+x%7D+%7E%7E%7E%7E%7E%7E%7E%2A+%5C%5C+%5C%5C%0Af%28g%28x%29%29%3D++%5Cfrac%7B1%7D%7B25%7D+%5Ccdot+5%5E%7Blog_5+x%5E2%7D+%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E+%2A%2A+%5C%5C+%5C%5C%0Af%28g%28x%29%29%3D++%5Cfrac%7B1%7D%7B25%7D+%5Ccdot+x%5E2+%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E+%7E%7E%7E+%2A%2A%2A+%5C%5C+%5C%5C)
Portanto,
![\boxed{f(g(x))= \frac{x^2}{25}} \boxed{f(g(x))= \frac{x^2}{25}}](https://tex.z-dn.net/?f=%5Cboxed%7Bf%28g%28x%29%29%3D++%5Cfrac%7Bx%5E2%7D%7B25%7D%7D)
Propriedades utilizadas:
![* ~~~~~~ a^{n-m}= \frac{a^n}{a^m} \\ \\
** ~~~~ k \cdot log_a x= log_a x^k \\ \\
*** ~ a^{log_a b}= b ~ \\ \\ * ~~~~~~ a^{n-m}= \frac{a^n}{a^m} \\ \\
** ~~~~ k \cdot log_a x= log_a x^k \\ \\
*** ~ a^{log_a b}= b ~ \\ \\](https://tex.z-dn.net/?f=%2A+%7E%7E%7E%7E%7E%7E+a%5E%7Bn-m%7D%3D++%5Cfrac%7Ba%5En%7D%7Ba%5Em%7D++%5C%5C+%5C%5C%0A%2A%2A+%7E%7E%7E%7E+k+%5Ccdot+log_a+x%3D+log_a+x%5Ek++%5C%5C+%5C%5C%0A%2A%2A%2A+%7E+a%5E%7Blog_a+b%7D%3D+b+%7E+%5C%5C+%5C%5C)
Sendo a
Aplicando algumas propriedades:
Portanto,
Propriedades utilizadas:
Perguntas interessantes
Química,
11 meses atrás
Português,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Geografia,
1 ano atrás
Física,
1 ano atrás