Matemática, perguntado por gustavo1143, 1 ano atrás

Se f for continua e  \int\limits^9_0 {f(x)} \, dx =4 , calcule  \int\limits^3_0 {xf(x^2)} \, dx

Soluções para a tarefa

Respondido por acidbutter
2
\displaystyle \int\limits_{0}^{3}xf(x^2)\,dx=\int\limits_{u(0)}^{u(3)}xf(u)\,dx\implies  u=x^2\implies \frac{du}{2}=xdx\\\\
\frac{1}{2}\int\limits_{0}^{9}f(u)\,du=\frac{1}{2}\cdot4=\boxed{2}
Perguntas interessantes