Matemática, perguntado por hanabiri, 6 meses atrás

Se dois angulos opostos pelo vértice medem 3x - 10° e 6x - 46°, então a medida de x é:
A) 30°
B) 10°
C) 20°
D) 12°

Soluções para a tarefa

Respondido por Armandobrainly
4

Siga a resolução da questão

\mathtt{3x - 10^{\circ} = 6x - 46^{\circ}} \\  \\ \mathtt{3x - 6x =  - 46^{\circ} +10^{\circ} } \\  \\ \mathtt{ - 3x = - 46^{\circ} + 10^{\circ} } \\  \\ \mathtt{ - 3x = - 36^{\circ}} \\  \\ \mathtt{x =  \frac{ - 36^{\circ}}{ - 3} } \\  \\ \red{\boxed{\boxed{\mathtt{x = 12^{\circ}}}}}

Resposta: item (D).

Att: José Armando


andreiasantosemagr38: Obrigado ❤
Respondido por solkarped
1

✅ Após ter resolvido os cálculos, concluímos que o valor de "x" é:

             \large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf x = 12^{\circ}\:\:\:}} \end{gathered}$}

Dois ângulos opostos pelo vértice possuem mesma medida.

Então:

             \large\displaystyle\text{$\begin{gathered}3x - 10 = 6x - 46 \end{gathered}$}

             \large\displaystyle\text{$\begin{gathered}3x - 6x = -46 + 10 \end{gathered}$}

                    \large\displaystyle\text{$\begin{gathered}-3x = -36 \end{gathered}$}

                       \large\displaystyle\text{$\begin{gathered}3x = 36 \end{gathered}$}

                          \large\displaystyle\text{$\begin{gathered}x = \frac{36}{3}  \end{gathered}$}

                          \large\displaystyle\text{$\begin{gathered}x = 12 \end{gathered}$}

✅ Portanto, o valor de "x" é:

                          \large\displaystyle\text{$\begin{gathered}x = 12^{\circ} \end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/46985422
  2. https://brainly.com.br/tarefa/46376835
  3. https://brainly.com.br/tarefa/45948615
  4. https://brainly.com.br/tarefa/6338837
  5. https://brainly.com.br/tarefa/49575780
  6. https://brainly.com.br/tarefa/49917071
  7. https://brainly.com.br/tarefa/48066267

Anexos:

solkarped: Bons estudos!!! Boa sorte!!!
Perguntas interessantes