Se A=
, B=
e C=
, determine X=A²- B²+C.
Cardonha:
??
Soluções para a tarefa
Respondido por
1
Olá
![\displaystyle\mathsf{A= \left[\begin{array}{ccc}2&1\\-4&5\\\end{array}\right] \qquad\qquad B= \left[\begin{array}{ccc}1&5\\-3&2\\\end{array}\right] \qquad\qquad C= \left[\begin{array}{ccc}4&2\\5&4\\\end{array}\right] }\\\\\\\\\mathsf{A^2~=~A\cdot A}\\\mathsf{B^2=B\cdot B}\\\mathsf{C=C}\\\\\\\text{Encontrando A}^2 \displaystyle\mathsf{A= \left[\begin{array}{ccc}2&1\\-4&5\\\end{array}\right] \qquad\qquad B= \left[\begin{array}{ccc}1&5\\-3&2\\\end{array}\right] \qquad\qquad C= \left[\begin{array}{ccc}4&2\\5&4\\\end{array}\right] }\\\\\\\\\mathsf{A^2~=~A\cdot A}\\\mathsf{B^2=B\cdot B}\\\mathsf{C=C}\\\\\\\text{Encontrando A}^2](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cmathsf%7BA%3D++%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B1%5C%5C-4%26amp%3B5%5C%5C%5Cend%7Barray%7D%5Cright%5D+%5Cqquad%5Cqquad+B%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26amp%3B5%5C%5C-3%26amp%3B2%5C%5C%5Cend%7Barray%7D%5Cright%5D+%5Cqquad%5Cqquad+C%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%26amp%3B2%5C%5C5%26amp%3B4%5C%5C%5Cend%7Barray%7D%5Cright%5D+%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Cmathsf%7BA%5E2%7E%3D%7EA%5Ccdot+A%7D%5C%5C%5Cmathsf%7BB%5E2%3DB%5Ccdot+B%7D%5C%5C%5Cmathsf%7BC%3DC%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BEncontrando+A%7D%5E2)
![\displaystyle\mathsf{A^2= \left[\begin{array}{ccc}2&1\\-4&5\\\end{array}\right] \cdot \left[\begin{array}{ccc}2&1\\-4&5\\\end{array}\right] }\\\\\\\mathsf{A^2=\left[\begin{array}{ccc}2\cdot 2~+~1\cdot(-4)\quad&(2\cdot1~+~1\cdot 5)\\(-4\cdot 2~+~5\cdot(-4))\quad&(-4\cdot 1~+~5\cdot 5)\\\end{array}\right] }}}}}} \displaystyle\mathsf{A^2= \left[\begin{array}{ccc}2&1\\-4&5\\\end{array}\right] \cdot \left[\begin{array}{ccc}2&1\\-4&5\\\end{array}\right] }\\\\\\\mathsf{A^2=\left[\begin{array}{ccc}2\cdot 2~+~1\cdot(-4)\quad&(2\cdot1~+~1\cdot 5)\\(-4\cdot 2~+~5\cdot(-4))\quad&(-4\cdot 1~+~5\cdot 5)\\\end{array}\right] }}}}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cmathsf%7BA%5E2%3D++%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B1%5C%5C-4%26amp%3B5%5C%5C%5Cend%7Barray%7D%5Cright%5D+%5Ccdot+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B1%5C%5C-4%26amp%3B5%5C%5C%5Cend%7Barray%7D%5Cright%5D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7BA%5E2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5Ccdot+2%7E%2B%7E1%5Ccdot%28-4%29%5Cquad%26amp%3B%282%5Ccdot1%7E%2B%7E1%5Ccdot+5%29%5C%5C%28-4%5Ccdot+2%7E%2B%7E5%5Ccdot%28-4%29%29%5Cquad%26amp%3B%28-4%5Ccdot+1%7E%2B%7E5%5Ccdot+5%29%5C%5C%5Cend%7Barray%7D%5Cright%5D+%7D%7D%7D%7D%7D%7D)
![\mathsf{A^2=\left[\begin{array}{ccc}4-4\quad&2+5\\-8-20\quad&-4+25\\\end{array}\right]}\\\\\\\boxed{\mathsf{A^2=\left[\begin{array}{ccc}0&7\\-28&21\\\end{array}\right]}}\\\\\\\text{Encontrando B}^2 \mathsf{A^2=\left[\begin{array}{ccc}4-4\quad&2+5\\-8-20\quad&-4+25\\\end{array}\right]}\\\\\\\boxed{\mathsf{A^2=\left[\begin{array}{ccc}0&7\\-28&21\\\end{array}\right]}}\\\\\\\text{Encontrando B}^2](https://tex.z-dn.net/?f=%5Cmathsf%7BA%5E2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4-4%5Cquad%26amp%3B2%2B5%5C%5C-8-20%5Cquad%26amp%3B-4%2B25%5C%5C%5Cend%7Barray%7D%5Cright%5D%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cmathsf%7BA%5E2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26amp%3B7%5C%5C-28%26amp%3B21%5C%5C%5Cend%7Barray%7D%5Cright%5D%7D%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BEncontrando+B%7D%5E2)
![\mathsf{B^2=\left[\begin{array}{ccc}1&5\\-3&2\\\end{array}\right]\cdot \left[\begin{array}{ccc}1&5\\-3&2\\\end{array}\right]}\\\\\\\mathsf{B^2=\left[\begin{array}{ccc}(1\cdot 1~+~5\cdot(-3))\quad&(1\cdot5~+~5\cdot 2)\\(-3\cdot1~+~2\cdot(-3))\quad&(-3\cdot5~+~2\cdot2)\\\end{array}\right]} \mathsf{B^2=\left[\begin{array}{ccc}1&5\\-3&2\\\end{array}\right]\cdot \left[\begin{array}{ccc}1&5\\-3&2\\\end{array}\right]}\\\\\\\mathsf{B^2=\left[\begin{array}{ccc}(1\cdot 1~+~5\cdot(-3))\quad&(1\cdot5~+~5\cdot 2)\\(-3\cdot1~+~2\cdot(-3))\quad&(-3\cdot5~+~2\cdot2)\\\end{array}\right]}](https://tex.z-dn.net/?f=%5Cmathsf%7BB%5E2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26amp%3B5%5C%5C-3%26amp%3B2%5C%5C%5Cend%7Barray%7D%5Cright%5D%5Ccdot+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26amp%3B5%5C%5C-3%26amp%3B2%5C%5C%5Cend%7Barray%7D%5Cright%5D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7BB%5E2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%281%5Ccdot+1%7E%2B%7E5%5Ccdot%28-3%29%29%5Cquad%26amp%3B%281%5Ccdot5%7E%2B%7E5%5Ccdot+2%29%5C%5C%28-3%5Ccdot1%7E%2B%7E2%5Ccdot%28-3%29%29%5Cquad%26amp%3B%28-3%5Ccdot5%7E%2B%7E2%5Ccdot2%29%5C%5C%5Cend%7Barray%7D%5Cright%5D%7D)
![\mathsf{B^2=\left[\begin{array}{ccc}(1-15)\quad&(5+10)\\(-3-6)\quad&(-15+4)\\\end{array}\right]}\\\\\\\boxed{\mathsf{B^2=\left[\begin{array}{ccc}-14&15\\-9&-11\\\end{array}\right]}}}}}}}}}}}}}}}}} \mathsf{B^2=\left[\begin{array}{ccc}(1-15)\quad&(5+10)\\(-3-6)\quad&(-15+4)\\\end{array}\right]}\\\\\\\boxed{\mathsf{B^2=\left[\begin{array}{ccc}-14&15\\-9&-11\\\end{array}\right]}}}}}}}}}}}}}}}}}](https://tex.z-dn.net/?f=%5Cmathsf%7BB%5E2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%281-15%29%5Cquad%26amp%3B%285%2B10%29%5C%5C%28-3-6%29%5Cquad%26amp%3B%28-15%2B4%29%5C%5C%5Cend%7Barray%7D%5Cright%5D%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cmathsf%7BB%5E2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-14%26amp%3B15%5C%5C-9%26amp%3B-11%5C%5C%5Cend%7Barray%7D%5Cright%5D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D)
Efetuando a expressão
X = A² - B² + C
![\mathsf{X=\left[\begin{array}{ccc}0&7\\-28&21\\\end{array}\right]~-~\left[\begin{array}{ccc}-14&15\\-9&-11\\\end{array}\right]~+~\left[\begin{array}{ccc}4&2\\5&4\\\end{array}\right]}\\\\\\\mathsf{X=\left[\begin{array}{ccc}(0-(-14)+4)\quad&(7-15+2)\\(-28-(-9)+5)\quad&(21-(-11)+4)\\\end{array}\right]}\\\\\\\\\boxed{\boxed{\mathsf{X=\left[\begin{array}{ccc}18&-6\\-14&36\\\end{array}\right]}}} \mathsf{X=\left[\begin{array}{ccc}0&7\\-28&21\\\end{array}\right]~-~\left[\begin{array}{ccc}-14&15\\-9&-11\\\end{array}\right]~+~\left[\begin{array}{ccc}4&2\\5&4\\\end{array}\right]}\\\\\\\mathsf{X=\left[\begin{array}{ccc}(0-(-14)+4)\quad&(7-15+2)\\(-28-(-9)+5)\quad&(21-(-11)+4)\\\end{array}\right]}\\\\\\\\\boxed{\boxed{\mathsf{X=\left[\begin{array}{ccc}18&-6\\-14&36\\\end{array}\right]}}}](https://tex.z-dn.net/?f=%5Cmathsf%7BX%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26amp%3B7%5C%5C-28%26amp%3B21%5C%5C%5Cend%7Barray%7D%5Cright%5D%7E-%7E%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-14%26amp%3B15%5C%5C-9%26amp%3B-11%5C%5C%5Cend%7Barray%7D%5Cright%5D%7E%2B%7E%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%26amp%3B2%5C%5C5%26amp%3B4%5C%5C%5Cend%7Barray%7D%5Cright%5D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7BX%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%280-%28-14%29%2B4%29%5Cquad%26amp%3B%287-15%2B2%29%5C%5C%28-28-%28-9%29%2B5%29%5Cquad%26amp%3B%2821-%28-11%29%2B4%29%5C%5C%5Cend%7Barray%7D%5Cright%5D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7B%5Cmathsf%7BX%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D18%26amp%3B-6%5C%5C-14%26amp%3B36%5C%5C%5Cend%7Barray%7D%5Cright%5D%7D%7D%7D)
Efetuando a expressão
X = A² - B² + C
Perguntas interessantes
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Química,
1 ano atrás
Biologia,
1 ano atrás
Física,
1 ano atrás
História,
1 ano atrás