Matemática, perguntado por fgleisla, 1 ano atrás

Se a matriz A = (aij) 3×4 tal que aij = (i+j, se i = j
( 2i - 2j, se i for diferente de j;
Então a22 + a34 é igual a :

Soluções para a tarefa

Respondido por guilhermeRL
4

Bom Dia!


\begin{bmatrix}a11&a12&a13&a14\\a21&a22&a23&a24\\a31&a32&a33&a34\\\end{bmatrix}

\mathrm{a11}\Rightarrow\mathrm{1+1}=\boxed{2}

\mathrm{a12}\Rightarrow\mathrm{2}\times\mathrm{1}\mathrm{-2}\times\mathrm{2}\Rightarrow\mathrm{2-4}=\boxed{-2}

\mathrm{a13}\Rightarrow\mathrm{2}\times\mathrm{1}\mathrm{-2}\times\mathrm{3}\Rightarrow\mathrm{2-6}=\boxed{-4}

\mathrm{a14}\Rightarrow\mathrm{2}\times\mathrm{1}\mathrm{-2}\times\mathrm{4}\Rightarrow\mathrm{2-8}=\boxed{-6}

\mathrm{a21}\Rightarrow\mathrm{2}\times\mathrm{2}\mathrm{-2}\times\mathrm{1}\Rightarrow\mathrm{4-2}=\boxed{2}

\mathrm{a22}\Rightarrow\mathrm{2+2}=\boxed{4}

\mathrm{a23}\Rightarrow\mathrm{2}\times\mathrm{2}\mathrm{-2}\times\mathrm{3}\Rightarrow\mathrm{4-6}=\boxed{-2}

\mathrm{a24}\Rightarrow\mathrm{2}\times\mathrm{2}\mathrm{-2}\times\mathrm{4}\Rightarrow\mathrm{4-8}=\boxed{-4}

\mathrm{a31}\Rightarrow\mathrm{2}\times\mathrm{3}\mathrm{-2}\times\mathrm{1}\Rightarrow\mathrm{6-2}=\boxed{4}

\mathrm{a32}\Rightarrow\mathrm{2}\times\mathrm{3}\mathrm{-2}\times\mathrm{2}\Rightarrow\mathrm{6-4}=\boxed{2}

\mathrm{a33}\Rightarrow\mathrm{3+3}=\boxed{6}

\mathrm{a34}\Rightarrow\mathrm{2}\times\mathrm{3}\mathrm{-2}\times\mathrm{4}\Rightarrow\mathrm{6-8}=\boxed{-2}


Matriz Resposta;

\begin{bmatrix}2&-2&-4&-6\\2&4&-2&-4\\ 4&2&6&-2\\\end{bmatrix}


Soma dos elementos a22 e a34;

a22+a34 → 4+(-2) → 4-2 = 2


Att;Guilherme Lima

Perguntas interessantes