se a= log 2 1 024 log 1 sobre 5 625 determine o valor de a
Soluções para a tarefa
Respondido por
0
O valor a é igual a 6. Utilizando as propriedades do logaritmo, podemos desenvolver o logaritmo dado e resolver o que se pede.
Logaritmo de uma potência
A potência de um logaritmo é igual ao produto do expoente pelo logaritmo da base da potência.
logₐ(b)ᶜ = c × logₐ(b)
Assim, dada a soma de logaritmos:
a = log₂(1024) + log₁/₅ (625)
Utilizando a propriedade da potência:
a = log₂(2¹⁰) + log₁/₅ (5⁴)
a = 10 × log₂(2) + 4 × log₁/₅ (5)
a = 10 × 1 + 4 × (-1)
a = 10 - 4
a = 6
O valor de a é igual a 6.
Para saber mais sobre Logaritmos, acesse: brainly.com.br/tarefa/52722142
Espero ter ajudado, até a próxima :)
#SPJ11
Perguntas interessantes