Se A= e M= então o determinante da matriz M é igual a :
Anexos:
![](https://pt-static.z-dn.net/files/d94/7579d6335bd3640266fc956b464cb97f.jpg)
Soluções para a tarefa
Respondido por
3
Primeiro, encontramos os valores de A transposta e inversa:
![A = \left[\begin{array}{ccc}2&-3\\-5&7\end{array}\right] =\ \textgreater \ A^{t} = \left[\begin{array}{ccc}2&-5\\-3&7\end{array}\right] A = \left[\begin{array}{ccc}2&-3\\-5&7\end{array}\right] =\ \textgreater \ A^{t} = \left[\begin{array}{ccc}2&-5\\-3&7\end{array}\right]](https://tex.z-dn.net/?f=+A+%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B-3%5C%5C-5%26amp%3B7%5Cend%7Barray%7D%5Cright%5D+%3D%5C+%5Ctextgreater+%5C++A%5E%7Bt%7D+%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B-5%5C%5C-3%26amp%3B7%5Cend%7Barray%7D%5Cright%5D)
![A*A^{-1}=I_{2} =\ \textgreater \ \left[\begin{array}{ccc}2&-3\\-5&7\end{array}\right] * \left[\begin{array}{ccc}a&b\\c&d\end{array}\right]= \left[\begin{array}{ccc}1&0\\0&1\end{array}\right]
A*A^{-1}=I_{2} =\ \textgreater \ \left[\begin{array}{ccc}2&-3\\-5&7\end{array}\right] * \left[\begin{array}{ccc}a&b\\c&d\end{array}\right]= \left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=A%2AA%5E%7B-1%7D%3DI_%7B2%7D+%3D%5C+%5Ctextgreater+%5C++%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B-3%5C%5C-5%26amp%3B7%5Cend%7Barray%7D%5Cright%5D+%2A+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%26amp%3Bb%5C%5Cc%26amp%3Bd%5Cend%7Barray%7D%5Cright%5D%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26amp%3B0%5C%5C0%26amp%3B1%5Cend%7Barray%7D%5Cright%5D%0A)
![=\ \textgreater \ \left[\begin{array}{ccc}2a-3c&2b-3d\\7c-5a&7d-5b\end{array}\right]=\left[\begin{array}{ccc}1&0\\0&1\end{array}\right] =\ \textgreater \ \left[\begin{array}{ccc}2a-3c&2b-3d\\7c-5a&7d-5b\end{array}\right]=\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%3D%5C+%5Ctextgreater+%5C+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2a-3c%26amp%3B2b-3d%5C%5C7c-5a%26amp%3B7d-5b%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26amp%3B0%5C%5C0%26amp%3B1%5Cend%7Barray%7D%5Cright%5D)
![=\ \textgreater \ \left \{ {{2a-3c=1} \atop {7c-5a=0}} \right. e \left \{ {{2b-3d=0} \atop {7d-5b=1}} \right. =\ \textgreater \ \left \{ {{2a-3c=1} \atop {7c-5a=0}} \right. e \left \{ {{2b-3d=0} \atop {7d-5b=1}} \right.](https://tex.z-dn.net/?f=%3D%5C+%5Ctextgreater+%5C+++%5Cleft+%5C%7B+%7B%7B2a-3c%3D1%7D+%5Catop+%7B7c-5a%3D0%7D%7D+%5Cright.+e++%5Cleft+%5C%7B+%7B%7B2b-3d%3D0%7D+%5Catop+%7B7d-5b%3D1%7D%7D+%5Cright.+)
Resolvendo o sistema, obtemos a = -7, b = -3, c = -5 e d = -2, achando assim a matriz inversa de A:
![A^{-1}= \left[\begin{array}{ccc}-7&-3\\-5&-2\end{array}\right] A^{-1}= \left[\begin{array}{ccc}-7&-3\\-5&-2\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-7%26amp%3B-3%5C%5C-5%26amp%3B-2%5Cend%7Barray%7D%5Cright%5D)
Agora, encontramos a matriz M:
Em seguida, seu determinante:
![det(M)=\left[\begin{array}{ccc}-5&-8\\-8&5\end{array}\right]=(-5)*5-[(-8)*(-8)]=\ \textgreater \
-25-64=-89 det(M)=\left[\begin{array}{ccc}-5&-8\\-8&5\end{array}\right]=(-5)*5-[(-8)*(-8)]=\ \textgreater \
-25-64=-89](https://tex.z-dn.net/?f=det%28M%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%26amp%3B-8%5C%5C-8%26amp%3B5%5Cend%7Barray%7D%5Cright%5D%3D%28-5%29%2A5-%5B%28-8%29%2A%28-8%29%5D%3D%5C+%5Ctextgreater+%5C+%0A-25-64%3D-89)
Resolvendo o sistema, obtemos a = -7, b = -3, c = -5 e d = -2, achando assim a matriz inversa de A:
Agora, encontramos a matriz M:
Em seguida, seu determinante:
diandrodocp6et34:
Certinho, Obrigado!
Perguntas interessantes
Matemática,
11 meses atrás
Física,
11 meses atrás
Matemática,
11 meses atrás
Psicologia,
1 ano atrás
Pedagogia,
1 ano atrás