Matemática, perguntado por tahersarsuryt, 1 ano atrás

Se a e b, a < b, são soluções da equação x^{log_{5} x } = \frac{x^4}{125} , então o valor de \frac{1}{2} (b-a) é:

Soluções para a tarefa

Respondido por rodriguesrio
19
 {x}^{ log_{5}(x) } = \frac{ {x}^{4} }{125} \\ \frac{ {x}^{4} }{ {x}^{ log_{5}(x) } } = 125 \\ {x}^{4 - log_{5}(x) } = {125}^{1} = &gt; x = 125\\ ou \\ {x}^{4 - log_{5}(x) } = {5}^{3} = &gt; x = 5

1/2(125 - 5) = 120/2 = 60
Perguntas interessantes