Matemática, perguntado por viniciusrodrigu1, 1 ano atrás

Se (a^2-b^2)/a^2-b^2 = 2  , então podemos afirmar que ovalor de a é igual a?


viniciusrodrigu1: o valor*
viniciusrodrigu1: DESCULPA A QUESTÃO NÃO É ESSA O CERTO É: (a-b)^2/a^2-b^2 = 2
viniciusrodrigu1: o resto do enunciado continua o mesmo.
aawr: Ahhhhhh,ok.
aawr: Transformando em produto notável:
(a-b)²/(a+b)(a-b)=2
Cortando o (a-b) de cima com um (a-b) do (a-b)²:
(a-b)/(a+b)=2
a-b=2a+2b
a+3b=0
a=-3b

Soluções para a tarefa

Respondido por aawr
1
É a mesma incógnita - e isso não é um polinômio de grau maior que 1 - ,então sim.
Só tem que se destacar que a²-b² ≠ 0,uma vez que uma divisão com divisor 0 ∉ R.
Logo é necessário a²≠b² para que satisfaça-se a equação.
E satisfazendo-se tudo isso,essa equação não deveria dar 2,mas sim 1,pois x/x=1.

viniciusrodrigu1: No gabarito a resposta é -3b
aawr: Se o termo de cima da fração é igual ao de baixo,deveria ser 1 o resultado dessa fração.Ou eu não entendi o exercício.
viniciusrodrigu1: da uma olhada de novo eu coloquei a questão errada, vê se consegui resolver agora
Perguntas interessantes