Matemática, perguntado por camiepifhanio, 1 ano atrás

se A= [2 7 -1 4] e B=[3 -2 6 0] determine a matriz x em cada caso:

a) x+b=a
b) x+b=2a
c) 2a+x=3b

Soluções para a tarefa

Respondido por avengercrawl
55
Olá



Matrizes, Equação Matricial.


\displaystyle \mathsf{A=  \left[\begin{array}{ccc}2&7\\-1&4\\\end{array}\right] \qquad\qquad\qquad\qquad B=  \left[\begin{array}{ccc}3&-2\\6&0\\\end{array}\right] }



A)

x + b = a

x = a - b



\displaystyle \mathsf{X=\left[\begin{array}{ccc}2&7\\-1&4\\\end{array}\right] - \left[\begin{array}{ccc}3&-2\\6&0\\\end{array}\right] }\\\\\\\\\mathsf{X=\left[\begin{array}{ccc}(2-3)&(7-(-2))\\(-1-6)&(4-0)\\\end{array}\right] }\\\\\\\\\boxed{\mathsf{  X=\left[\begin{array}{ccc}-1&9\\-7&4\\\end{array}\right] }}




B)

X + B = 2A

X = 2A - B



\mathsf{2A~=~2\cdot\left[\begin{array}{ccc}2&7\\-1&4\\\end{array}\right]}\\\\\\\\\mathsf{2A= \left[\begin{array}{ccc}4&14\\-2&8\\\end{array}\right]}


\mathsf{X=\mathsf{ \left[\begin{array}{ccc}4&14\\-2&8\\\end{array}\right]}-\left[\begin{array}{ccc}3&-2\\6&0\\\end{array}\right] }}\\\\\\\\\mathsf{X=\left[\begin{array}{ccc}(4-3)&(14-(-2))\\(-2-6)&(8-0)\\\end{array}\right] }}\\\\\\\\\boxed{\mathsf{X=\left[\begin{array}{ccc}1&16\\-8&8\\\end{array}\right] }}}





C)

2A + X = 3B

X = 3B - 2A



\mathsf{3B=3\cdot \left[\begin{array}{ccc}3&-2\\6&0\\\end{array}\right] }}\\\\\\\\\mathsf{3B=\left[\begin{array}{ccc}9&-6\\18&0\\\end{array}\right] }}\\\\\\\\2A= \left[\begin{array}{ccc}4&14\\-2&8\\\end{array}\right]\qquad\qquad\qquad\Longleftarrow\text{(obtido no item B)}}



\mathsf{X=\left[\begin{array}{ccc}9&-6\\18&0\\\end{array}\right] - \left[\begin{array}{ccc}4&14\\-2&8\\\end{array}\right]}\\\\\\\\\mathsf{X= \left[\begin{array}{ccc}(9-4)&(-6-14)\\(18-(-2))&(0-8)\\\end{array}\right]}\\\\\\\\\boxed{\mathsf{X= \left[\begin{array}{ccc}5&-20\\20&-8\\\end{array}\right]}}



Perguntas interessantes