Matemática, perguntado por douglas0503, 10 meses atrás

Se 10tg x + 16 cos x - 17 sec x = 0, então, sen x é igual a:

Soluções para a tarefa

Respondido por EinsteindoYahoo
1

Resposta:

10tg x + 16 cos x - 17 sec x = 0

10 * sen(x)/cos(x) +16*cos(x)-17 * 1/cos(x) =0

multiplique tudo por cos(x)

10 * sen(x)+16*cos²(x)-17=0

** Sabemos que sen²(x)+cos²(x)=1 ==>cos²(x)=1-sen²(x)

10 * sen(x)+16*[1-sen²(x)]-17=0

10sen(x)+16-16sen²(x)-17=0

10sen(x)-16*sen²(x)-1=0

ou

16sen²(x)-10sen(x)+1=0

Fazendo y=sen(x)

16y²-10y+1=0

y'=[10+√(100-64)]/32=[10+6]/32=1/2

y'=[10-√(100-64)]/32=[10-6]/32=1/8

Se y=1/2=sen(x)    ==>sen(x)=1/2

Se y=sen(x)=1/2   ==>sen(x)=1/8

Perguntas interessantes