Matemática, perguntado por f1799, 6 meses atrás

(SAEP 2012). A equação x² – 6x+15 = 0 (A) não tem raízes reais. (B) tem uma raiz nula e outra negativa. (C) tem uma raiz nula e outra positiva. (D) tem duas raízes reais simétricas.

Soluções para a tarefa

Respondido por morgadoduarte23
1

Resposta:

Não tem raízes reais  A)

( ver gráfico em anexo )

Explicação passo a passo:

Para se saber a quantidade e o tipo de raízes, necessitamos calcular

o  "Binómio Discriminante " , o Δ = b² - 4 * a * c

Δ > 0   duas raízes reais e distintas

Δ = 0 uma única raiz, que se diz ser dupla

Δ < 0  nenhuma raiz pertencente aos números reais  

x² – 6 x + 15 = 0

a =   1

b = - 6

c = + 15

Δ = ( - 6 )² - 4 * 1 * 15 = 36 - 60 = - 24

Δ < 0 , logo negativo.

Não tem raízes reais  A)

Nota →  Uma equação do 2º grau sem raízes reais não interseta o eixo x.

Se a > 0  o gráfico fica acima do eixo x.

Como neste exemplo.

Bons Estudos.

---------------------------

( * ) multiplicação     ( < ) menor do que       ( > ) maior do que

Anexos:
Perguntas interessantes