sabendo que x é um arco do segundo quadrante e que sen x = 0,6 , calcule no caderno cos x , sen ( r + x ) e cos ( r + x )
Soluções para a tarefa
Respondido por
38
Sabemos que sen²x + cos²x = 1 => 0,6² + cos²x = 1 => cos²x = 1 - 0,36
cos²x = 0,64
Como x pertence 1° quadrante, o cosseno é negativo, logo:
cosx = -0,8
sen(π + x) = -sen(π + x - π) = -senx = -0,6
cos(π + x) = -cos(π + x - π) = -cosx = -(-0,8) = 0,8
cos²x = 0,64
Como x pertence 1° quadrante, o cosseno é negativo, logo:
cosx = -0,8
sen(π + x) = -sen(π + x - π) = -senx = -0,6
cos(π + x) = -cos(π + x - π) = -cosx = -(-0,8) = 0,8
Perguntas interessantes
Informática,
10 meses atrás
História,
10 meses atrás
História,
10 meses atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Português,
1 ano atrás
Química,
1 ano atrás