sabendo que tg(x) = 1/5 e tg(y)=1/10, calculando o valor de tg(x+y) obtemos:
(na "/" lê-se "sobre")
Soluções para a tarefa
Respondido por
6
Identidade da tangente da soma de dois arcos:
![\boxed{\begin{array}{c}\mathrm{tg}(x+y)=\dfrac{\mathrm{tg\,}x+\mathrm{tg\,}y}{1-\mathrm{tg\,}x\cdot \mathrm{tg\,}y} \end{array}}~~~~~~~~\text{com }\mathrm{tg\,}x\cdot \mathrm{tg\,}y\ne 1 \boxed{\begin{array}{c}\mathrm{tg}(x+y)=\dfrac{\mathrm{tg\,}x+\mathrm{tg\,}y}{1-\mathrm{tg\,}x\cdot \mathrm{tg\,}y} \end{array}}~~~~~~~~\text{com }\mathrm{tg\,}x\cdot \mathrm{tg\,}y\ne 1](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathrm%7Btg%7D%28x%2By%29%3D%5Cdfrac%7B%5Cmathrm%7Btg%5C%2C%7Dx%2B%5Cmathrm%7Btg%5C%2C%7Dy%7D%7B1-%5Cmathrm%7Btg%5C%2C%7Dx%5Ccdot+%5Cmathrm%7Btg%5C%2C%7Dy%7D+%5Cend%7Barray%7D%7D%7E%7E%7E%7E%7E%7E%7E%7E%5Ctext%7Bcom+%7D%5Cmathrm%7Btg%5C%2C%7Dx%5Ccdot+%5Cmathrm%7Btg%5C%2C%7Dy%5Cne+1)
____________________
Para esta questão, temos
e ![\mathrm{tg\,}y=\dfrac{1}{10} \mathrm{tg\,}y=\dfrac{1}{10}](https://tex.z-dn.net/?f=%5Cmathrm%7Btg%5C%2C%7Dy%3D%5Cdfrac%7B1%7D%7B10%7D)
Portanto,
![\mathrm{tg}(x+y)=\dfrac{\frac{1}{5}+\frac{1}{10}}{1-\frac{1}{5}\cdot \frac{1}{10}}\\\\\\ \mathrm{tg}(x+y)=\dfrac{\frac{2}{10}+\frac{1}{10}}{1-\frac{1}{50}}\\\\\\ \mathrm{tg}(x+y)=\dfrac{\frac{3}{10}}{\frac{50}{50}-\frac{1}{50}}\\\\\\ \mathrm{tg}(x+y)=\dfrac{\left(\frac{3}{10} \right )}{\left(\frac{49}{50} \right )}\\\\\\ \mathrm{tg}(x+y)=\dfrac{3}{10}\cdot \dfrac{50}{49}\\\\\\ \mathrm{tg}(x+y)=\dfrac{3}{\diagup\!\!\!\!\! 10}\cdot \dfrac{\diagup\!\!\!\!\! 10\cdot 5}{49}\\\\\\ \boxed{\begin{array}{c}\mathrm{tg}(x+y)=\dfrac{15}{49} \end{array}} \mathrm{tg}(x+y)=\dfrac{\frac{1}{5}+\frac{1}{10}}{1-\frac{1}{5}\cdot \frac{1}{10}}\\\\\\ \mathrm{tg}(x+y)=\dfrac{\frac{2}{10}+\frac{1}{10}}{1-\frac{1}{50}}\\\\\\ \mathrm{tg}(x+y)=\dfrac{\frac{3}{10}}{\frac{50}{50}-\frac{1}{50}}\\\\\\ \mathrm{tg}(x+y)=\dfrac{\left(\frac{3}{10} \right )}{\left(\frac{49}{50} \right )}\\\\\\ \mathrm{tg}(x+y)=\dfrac{3}{10}\cdot \dfrac{50}{49}\\\\\\ \mathrm{tg}(x+y)=\dfrac{3}{\diagup\!\!\!\!\! 10}\cdot \dfrac{\diagup\!\!\!\!\! 10\cdot 5}{49}\\\\\\ \boxed{\begin{array}{c}\mathrm{tg}(x+y)=\dfrac{15}{49} \end{array}}](https://tex.z-dn.net/?f=%5Cmathrm%7Btg%7D%28x%2By%29%3D%5Cdfrac%7B%5Cfrac%7B1%7D%7B5%7D%2B%5Cfrac%7B1%7D%7B10%7D%7D%7B1-%5Cfrac%7B1%7D%7B5%7D%5Ccdot+%5Cfrac%7B1%7D%7B10%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathrm%7Btg%7D%28x%2By%29%3D%5Cdfrac%7B%5Cfrac%7B2%7D%7B10%7D%2B%5Cfrac%7B1%7D%7B10%7D%7D%7B1-%5Cfrac%7B1%7D%7B50%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathrm%7Btg%7D%28x%2By%29%3D%5Cdfrac%7B%5Cfrac%7B3%7D%7B10%7D%7D%7B%5Cfrac%7B50%7D%7B50%7D-%5Cfrac%7B1%7D%7B50%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathrm%7Btg%7D%28x%2By%29%3D%5Cdfrac%7B%5Cleft%28%5Cfrac%7B3%7D%7B10%7D+%5Cright+%29%7D%7B%5Cleft%28%5Cfrac%7B49%7D%7B50%7D+%5Cright+%29%7D%5C%5C%5C%5C%5C%5C+%5Cmathrm%7Btg%7D%28x%2By%29%3D%5Cdfrac%7B3%7D%7B10%7D%5Ccdot+%5Cdfrac%7B50%7D%7B49%7D%5C%5C%5C%5C%5C%5C+%5Cmathrm%7Btg%7D%28x%2By%29%3D%5Cdfrac%7B3%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21+10%7D%5Ccdot+%5Cdfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21+10%5Ccdot+5%7D%7B49%7D%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathrm%7Btg%7D%28x%2By%29%3D%5Cdfrac%7B15%7D%7B49%7D+%5Cend%7Barray%7D%7D)
____________________
Para esta questão, temos
Portanto,
waldemarlipke:
valeu meu brother.
Perguntas interessantes
Inglês,
1 ano atrás
Artes,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Informática,
1 ano atrás