Matemática, perguntado por Would, 1 ano atrás

Sabendo que sen^2 x/cos x = 0,45, com 0 < x < pi/2, determine o valor de sen x: 

Soluções para a tarefa

Respondido por Lukyo
1
\dfrac{\mathrm{sen^2\,}x}{\cos x}=0,45\\\\\\ 
\dfrac{\mathrm{sen^2\,}x}{\cos x}=\dfrac{45}{100}\\\\\\ 
\dfrac{\mathrm{sen^2\,}x}{\cos x}=\dfrac{\diagup\!\!\!\! 5\cdot 
9}{\diagup\!\!\!\! 5\cdot 20}\\\\\\ \dfrac{\mathrm{sen^2\,}x}{\cos 
x}=\dfrac{9}{20}\\\\\\ 20\,\mathrm{sen^2\,}x=9\cos x~~~~~~(\text{mas 
}\mathrm{sen^2\,}x=1-\cos^2 x)\\\\ 20\,(1-\cos^2 x)=9\cos x

20-20\cos^2 x=9\cos x\\\\ 0=20\cos^2 x+9\cos x-20\\\\ 20\cos^2 x+9\cos x-20=0


Fazendo a seguinte mudança de variável:

\cos x=t~~~~~~(-1\le t\le 1)

a equação fica

20t^2+9t-20=0~~~\Rightarrow~~\left\{\!
 \begin{array}{l} a=20\\b=9\\c=-20 \end{array} \right.\\\\\\ 
\Delta=b^2-4ac\\\\ \Delta=9^2-4\cdot 20\cdot (-20)\\\\ 
\Delta=81+1\,600\\\\ \Delta=1\,681=41^2


t=\dfrac{-b\pm
 \sqrt{\Delta}}{2a}\\\\\\ t=\dfrac{-9\pm \sqrt{41^2}}{2\cdot 20}\\\\\\ 
t=\dfrac{-9\pm 41}{40}\\\\\\ \begin{array}{rcl} 
t=\dfrac{-9+41}{40}&amp;~\text{ ou }~&amp;t=\dfrac{-9-41}{40}\\\\\\ 
t=\dfrac{32}{40}&amp;~\text{ ou }~&amp;t=\dfrac{-50}{40}\\\\\\ 
t=\dfrac{4}{5}&amp;~\text{ ou 
}~&amp;t=-\,\dfrac{5}{4}&lt;-1~~~~(\text{n\~ao serve}) \end{array}


Logo, temos

t=\dfrac{4}{5}


Voltando à variável x\,, temos

\cos x=\dfrac{4}{5}\\\\\\ 5\cos x=4


Elevando os dois lados ao quadrado, temos

(5\cos
 x)^2=4^2\\\\ 25\cos^2 x=16~~~~~~(\text{mas }\cos^2 
x=1-\mathrm{sen^2\,}x)\\\\ 25\,(1-\mathrm{sen^2\,}x)=16\\\\ 
25-25\,\mathrm{sen^2\,}x=16\\\\25-16=25\,\mathrm{sen^2\,}x\\\\ 
9=25\,\mathrm{sen^2\,}x\\\\ \mathrm{sen^2\,}x=\dfrac{9}{25}\\\\\\ 
\mathrm{sen\,}x=\pm \sqrt{\dfrac{9}{25}}\\\\\\ \mathrm{sen\,}x=\pm 
\dfrac{3}{5}


Como x é um arco do 1º quadrante, o seno de x é positivo. Portanto,

\mathrm{sen\,}x=\dfrac{3}{5}\\\\\\ \boxed{\begin{array}{c}\mathrm{sen\,}x=0,6 \end{array}}

Perguntas interessantes