Sabendo que o triângulo A’B’C’ representa uma figura homotética em relação ao triângulo ABC, e que D é o centro de homotetia, podemos afirmar que:
a) Houve uma homotetia direta, com k > 1.
b) Houve uma homotetia inversa, com K < - 1.
c) Houve uma homotetia direta, com – 1 < k < 0.
d) Houve uma homotetia direta, com 0 < k < 1.
e) Houve uma homotetia inversa, com – 1 < k < 0.
Anexos:
Soluções para a tarefa
Respondido por
1
Podemos afirmar corretamente que a) Houve uma homotetia direta, com k > 1.
Vejamos como resolver esse exercício. Estamos diante de um problema de homotetia de figuras geométricas.
Não será necessária nenhuma fórmula para a resolução da mesma, apenas raciocínio referente a matéria da questão.
Vamos aos dados iniciais:
- Sabendo que o triângulo A’B’C’ representa uma figura homotética em relação ao triângulo ABC, e que D é o centro de homotetia,
- O que pode ser afirmado?
Resolução:
A figura apresenta uma homotetia direta, pois o centro da homotetia está numa das extremidades, e há a progressão da área conforme as figuras homotéticas se afastam do centro D.
Sabemos que k > 1, pois houve um aumento da figura de A'B'C' para ABC, e essa razão de aumento é maior que 1, pois se fosse igual a 1, os tamanhos da figuras se manteriam iguais.
Portanto a alternativa correta é a A).
Perguntas interessantes
Matemática,
4 meses atrás
História,
4 meses atrás
História,
4 meses atrás
História,
5 meses atrás
Matemática,
10 meses atrás