Matemática, perguntado por mariagabiaraujo, 9 meses atrás

Sabendo que o polinômio p(x) = x^3 – 5x^2 + mx + n e que p(3) = 0 e p(-2) = -15. Determine o valor de m + n:

Soluções para a tarefa

Respondido por wcostanet
0

Resposta:

m + n = 8

Explicação passo-a-passo:

p(x) = x^{3} - 5x^{2} + mx + n\\\\p(3) = 0\\\\p(-2) = -15

p(3) = 3^{3} - 5.3^{2} + m.3 + n = 0\\\\27 - 45 + 3m + n = 0\\\\-18 + 3m + n = 0\\\\3m + n = 18

p(-2) = (-2)^{3} - 5(-2)^{2} + m2 + n = -15\\\\-8 - 20 + 2m + n = -15\\\\-28 + 2m + n = -15\\\\2m + n = -15 + 28\\\\2m + n = 13

Com isso, temos:

3m + n = 18\\\\2m + n = 13

Vamos calcular m e n através da substituição:

3m + n = 18\\\\n = 18 - 3m

2m + n = 13\\\\2m + (18 - 3m) = 13\\\\2m + 18 - 3m = 13\\\\-3m + 2m = 13 - 18\\\\-m = -5\\\\m = 5

n = 18 - 3m\\\\n = 18 - 3.5\\\\n = 18 - 15\\\\n = 3

Assim, m + n = 5 + 3 = 8

Perguntas interessantes